

VONVIJ2052

The 11th International Symposium on Advanced Optical Manufacturing and Testing Technologies

July 20–22, 2025 | Chengdu, China

Hosts

Optical Society of Sichuan Institute of Optics and Electronics, Chinese Academy of Sciences Committee of Optical Manufacturing Technology, Chinese Optical Society

Organizers

Tianfu Xinglong Lake Laboratory The 29th Research Institute of China Electronics Technology Group Corporation (CETC)

VOIVV1.5052

July 20–22, 2025

Chengdu, China

Table of Contents

Preface	01
Committee	02
General Information	07
Мар	09
Program at a Glance	10
Forum	12
Conference Programs	13
Conference Abstracts	36
Poster List	41

VOIVIVIOS

Preface

In the height of summer, as innovation meets tradition in the vibrant city of Chengdu, we are honored to convene the 11th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2025). On behalf of the Organizing Committee, I extend my warmest welcome and sincere appreciation to all distinguished guests—leaders, scholars, industry experts, and colleagues from around the world—who have gathered here for this important event.

Over the past two decades, AOMATT has grown steadily, guided by the principles of openness, integration, innovation, and sharing. The conference has become a high-level international platform for multidisciplinary exchange and collaboration, continuously advancing the science and technology of optical manufacturing.

This year's conference, centered on the latest developments and future trends in advanced optical manufacturing and testing. Through academic presentations and in-depth discussions, we will focus on frontier topics, interdisciplinary research, and real-world applications—sharing insights, exploring synergies, and fostering a thriving innovation ecosystem.

As we gather to exchange knowledge and spark new ideas, I would like to express my heartfelt thanks to all those who have supported the growth of AOMATT over the years our academic colleagues, institutional partners, sub-forum organizers, volunteers, and the entire organizing team. Your dedication and collaboration are deeply appreciated.

May this conference inspire new thinking, encourage meaningful dialogue, and open up new paths of discovery for all participants!

Xiangang Luo

General Chair, AOMATT 2025 Academician, Chinese Academy of Engineering

COMMITTEE

Hosts

中国光学学会光学制造专委会

Optical Society of Sichuan Institute of Optics and Electronics, Chinese Academy of Sciences Committee of Optical Manufacturing Technology, Chinese Optical Society

Organizers

CEIC 中国电子科技集团公司第二十九研究所

Tianfu Xinglong Lake Laboratory The 29th Research Institute of China Electronics Technology Group Corporation (CETC)

Co-organizers

Tan Kah Kee Innovation Laboratory National Key Laboratory of Optical Field Manipulation Science and Technology University of Electronic Science and Technology of China Sichuan University Southwest Jiaotong University Southwest University of Science and Technology Southwest Institute of Science and Technology Southwest Institute of Technical Physics Institute of Applied Electronics, China Academy of Engineering Physics (CAEP) Research Center of Laser Fusion, China Academy of Engineering Physics (CAEP) Microwave Photonics Technology Key Laboratory of Sichuan Province

Technical Support

SPIE The international society for optics and photonics

SPIE

Journals

Opto-Electronic Advances Opto-Electronic Science Opto-Electronic Technology Intelligent Opto-Electronics **Opto-Electronics Plus Opto-Electronic Engineering (Chinese)** [OE Journals Group: https://www.oejournal.org/]

Honorary Chairs

Bingkun Zhou, Tsinghua University, China Guozhen Yang, Institute of Physics, Chinese Academy of Sciences, China

General Chair

Xiangang Luo, Institute of Optics and Electronics, Chinese Academy of Sciences, China

General Co-Chairs

Costas Fotakis, FORTH, Greece Koji Sugioka, RIKEN Center for Advanced Photonics, Japan Jinghua Teng, A*STAR, Singapore

Technical Program Committee Chairs

Minghui Hong, Xiamen University, China Emmanuel Stratakis, IESL-FORTH, Greece

Technical Program Committee Co-Chairs

Xinbin Cheng, Tongji University, China Mingbo Pu, Institute of Optics and Electronics, Chinese Academy of Sciences, China Xiaodi Tan, Fujian Normal University, China Yan Zhang, Capital Normal University, China Mohsen Rahmani, Nottingham Trent University, United Kingdom

Secretary General

Hu Yang, Optical Society of Sichuan, China

VOIVATJ.5052

Track Committees

Track 1: Electro-optical Telescope and Adaptive Optics

Leading Chair:

Changhui Rao, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Co-Chairs:

Joseph Shields, LBT Observatory, United States Jianli Wang, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China Suijian Xue, National Astronomical Observatories, Chinese Academy of Sciences, China

Secretary:

Lanqiang Zhang, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Track 2: Large and Ultra-Precision Optics Manufacturing

Leading Chair:

Qiang Chen, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Co-Chairs:

Richard Freeman, Zeeko Ltd, United Kingdom Chaoyang Wei, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China Xi Hou, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Secretary:

Shuai Zhang, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Track 3: Extreme Micro/Nano Manufacturing

Leading Chair: Xinbin Cheng, Tongji University, China

Co-Chairs:

L. Jay Guo, University of Michigan, United States Dong Wu, University of Science and Technology of China, China Huigao Duan, Hunan University, China

Secretary: Jingyuan Zhu, Tongji University, China

VOIVVIJ SOS

Track 4: Optical Field Manipulation: Principles and Applications

Leading Chair:

Mingbo Pu, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Co-Chairs:

Mohsen Rahmani, Nottingham Trent University, United Kingdom Guoxing Zheng, Wuhan University, China Maowen Song, Nanjing University, China Lianwei Chen, Institute of Optics and Electronics, Chinese Academy of Sciences, China Qihua Zhu, Research Center of Laser Fusion, China Academy of Engineering Physics, China

Secretary:

Li Long, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Track 5: Novel Optoelectronic Materials

Leading Chair: Yan Zhang, Capital Normal University, China

Co-Chairs:

Wei Hu, Nanjing University, China Xianzhong Chen, Heriot-Watt University, United Kingdom Burdanova Maria, Moscow Institute of Physics and Technology, Russia

Secretary:

Bin Hu, Beijing Institute of Technology, China

Track 6: Optical Sensing and Optical Communication

Leading Chair:

Changyuan Yu, The Hong Kong Polytechnic University, Hong Kong, China

Co-Chairs:

Jian Chen, Nanjing University of Posts and Telecommunications, China Zixiong Wang, Tianjin University, China Yixin Wang, A*STAR, Singapore Guowen Yang, DoGain Optoelectronic Inc., China Xihua Zou, Southwest Jiaotong University, China

Secretary:

Xiaodi You, Soochow University, China

VOIVV1.1.5052

Track 7: Intelligent Optoelectronic Technology

Leading Chair: Xiaodi Tan, Fujian Normal University, China

Co-Chairs:

Osamu Matoba, Kobe University, Japan Xingjun Wang, Peking University, China Guohai Situ, Shanghai Institute of Laser Technology Co.,Ltd/Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China

Secretary:

Ying Jin, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China

Track 8: Optoelectronic Fusion Sensing Technology

Leading Chair:

Tao Zhou, The 29th Research Institute of China Electronics Technology Group Corporation (CETC), China

Co-Chairs:

Lianshan Yan, Southwest Jiaotong University, China Zeyu Zhao, Institute of Optics and Electronics, Chinese Academy of Sciences, China

Secretary:

Wenlin Bai, The 29th Research Institute of China Electronics Technology Group Corporation (CETC), China

VOIVALLS05

GENERAL INFORMATION

Conference Venue

Conference Venue: Chengdu Aerotropolis International Convention Center (成都空港国际会议中心) Address: No. 1555, South Section of Chengshuang Avenue, Shuangliu District, Chengdu, Sichuan, China, 610200(中 国四川成都双流区成双大道南段 1555 号 邮编: 610200)

Registration

Location: 3F 12:00-22:00 Sunday, 20 July 07:30-18:30 Monday, 21 July 08:30-18:30 Tuesday, 22 July

Onsite Speaker Preparation

Oral presenters are required to be in the session room at least 30 minutes prior to their scheduled talk to upload and check their presentation. No shows of the oral presentation will be reported to conference management and these papers will not be published.

To ensure the efffcient and orderly conduct of the conference, the duration of various reports is as follows: Plenary talk: 40 minutes per person, including a question-and-answer session. Invited talk: 25 minutes per person, including a question-and-answer session. Oral talk: 15 minutes per person, including a question-and-answer session.

Onsite Poster Preparation

Authors should put up their posters before the poster session starts. Authors are required to be standing by their posters **from 17:30 to 18:30 on the 21st of July**, to answer questions and further discuss their work with attendees. No-show posters will be reported to conference management and these papers will not be published.

Recommended Poster Size: 0.8m (Length) * 1.2m (Height) Note: Each board has a Control ID on it, please note if it is your own Control ID when posting.

Location: 3F Poster Area Poster Session: 17:30-18:30 Monday, 21 July

Lunch

Location: 3F Grand Ballroom 12:30-14:00 Monday, 21 July 12:30-14:00 Tuesday, 22 July

Dinner

Location: 3F Grand Ballroom 18:30-20:00 Monday, 21 July

Dinner and Award Ceremony

Conference Award will be presented at the dinner. Location: 3F Convention Hall A&B&E&F 18:00-20:00 Sunday, 20 July

Exhibition

The Optoelectronic Products Exhibition is open to all attendees

Location: 3F Exhibition Area 08:30-18:30 Monday, 21 July 08:30-18:30 Tuesday, 22 July

Conference Materials

AOMATT2025 Technical Digest material is composed of plenary, invited and accepted oral abstracts. The Technical Digest material is available on AOMATT2025 platform (https://www.aomatt.org/) and can be downloaded in PDF form.

Guidelines

Opening Ceremony of the AOMATT	Conventional Hall A&B&E&F	Track 5: Novel Optoelectronic Materials
Plenary Speeches	Conventional Hall A&B&E&F	Track 6: Optical Sensing and Optical Communica
Science and Technology Innovation and Industry Development Integration Forum	Convention Hall C&D	Track 7: Intelligent Optoelectronic Technology
Trach 11. Flores and the second s		Track 8: Optoelectronic Fusion Sensing Technold
ITACK I. ELECTIO-OPTICAL LELESCOPE ALIA AUAPTIVE OPTICS		Communication for Dostors
Track 2:Large and Ultra-Precision Optics Manufacturing	Meeting Room 301A	
Track 3:Extreme Micro/Nano Manufacturing	Meeting Room 301C	
Track 4: Optical Field Manipulation: Principles and Applications	ns Meeting Room 302A	

Meeting Room 306 Meeting Room 305

Meeting Room 307 VIP Room 3-1

ical Communication

ensing Technology

Poster Area Exhibition Area

SORUTION

Page 09 🔳

PROGRAM AT A GLANCE

The Program of the 11th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2025)

Location: 3F, Block B, Chengdu Aerotropolis International Convention Center

Sunday, 20 July

Dinner (Award Ceremony)	18:00-20:00	Convention Hall A&B&E&F
-------------------------	-------------	-------------------------

Monday, 21 July

Opening Ceremony	08:30-08:50	Convention Hall A&B&E&F
Plenary Speeches	08:50-12:30	Convention Hall A&B&E&F
Track 1: Electro-optical Telescope and Adaptive Optics	14:00-17:30	308
Track 2: Large and Ultra-Precision Op- tics Manufacturing		301A
Track 3: Extreme Micro/Nano Manufac- turing		301C
Track 4: Optical Field Manipulation: Principles and Applications		302A
Track 5: Novel Optoelectronic Materials		VIP3-1
Track 6: Optical Sensing and Optical Communication		307
Track 7: Intelligent Optoelectronic Technology		306
Track 8: Optoelectronic Fusion Sensing Technology		305
Focused Discussion Time for Posters	17:30-18:30	Poster Area

VOIVIVI205

Tuesday, 22 July

Track 1: Electro-optical Telescope and Adaptive Optics		308
Track 2: Large and Ultra-Precision Op- tics Manufacturing		301A
Track 3: Extreme Micro/Nano Manufac- turing		301C
Track 4: Optical Field Manipulation: Principles and Applications	08:30-18:30	302A
Track 5: Novel Optoelectronic Materials		VIP3-1
Track 6: Optical Sensing and Optical Communication		307
Track 7: Intelligent Optoelectronic Technology		306

Concurrent Activities of the AOMATT 2025

Science and Technology Innovation and Industry Development Integration Forum	14:00-17:10 Monday, 21 July	Convention Hall C&D
Optoelectronic Products Exhibition	08:30-18:30 Monday, 21 July 08:30-18:30 Tuesday, 22 July	Exhibition Area

On-site Registration:

Location: 3F, Block B, Chengdu Aerotropolis International Convention Center

12:00-22:00 Sunday, 20 July

07:30-18:30 Monday, 21 July

08:30-18:30 Tuesday, 22 July

FORUM

Science and Technology Innovation and Industry Development Integration Forum

	July 21, 2025
14:00-14:05	Opening Address Minghui Hong Fellow, Singapore Academy of Engineering
14:05-14:20	Release of Sichuan Province's Al Innovation Scenarios List & Interpretation of Sichuan Provincial Science and Technology Plan 'Unveiling and Commanding' Project Management Measures (Trial)" Dingchuan Wang Director of the Achievement Transformation Division, Sichuan Provincial Department of Science and Technology
14:20-14:50	Challenges in Railway Construction and Maintenance in Western Mountainous Regions and the Empowerment by Optoelectronic Technologies Jingchuan Yao Research Fellow, China Academy of Railway Sciences Corporation Limited
14:50-15:20	Optical Interconnect Technology and Industry Development Trends Huitao Wang Chief Planning Engineer for Optoelectronics, ZTE Corporation
15:20-15:40	Break
15:40-16:10	Breakthroughs in Frontier Optoelectronic Technologies and Key Achievements Junwei Hu Chief Engineer of the 3D Five-Axis Product Line, HGTECH Laser Engineering Co., Ltd.
16:10-16:40	The Present and Future of Oxide OLED Technology Xiufeng Zhou R&D Director, HKC Co., Ltd.
16:40-17:10	Progress on Shanghai Micro Electronics' Lithography Systems Yimin Shi Product Director, Shanghai Micro Electronics Equipment (Group) Co., Ltd.

VOIVVIJ See 22

CONFERENCE PROGRAMS

	July 21, 2025
08:30-08:50	Opening Ceremony
08:50-09:30	Meta Devices from Optics to Quantum Din-Ping Tsai City University of Hong Kong, China
09:30-10:10	30 Years of Nanoimprint: Past Development and Current Momentum L. Jay Guo University of Michigan, USA
10:10-10:30	Break
10:30-11:10	Atomaterials for Sustainability Baohua Jia Royal Melbourne Institute of Technology (RMIT) University, Australia
11:10-11:50	Materials Solutions for Sustainability Challenges Xiaobo Yin The University of Hong Kong, China
11:50-12:30	Grayscale Laser Beam Lithography for Large Area Surface Engineering: Accelerating the Lab-to-Fab Transition Kahraman Keskinbora RAITH Laser Systems B.V, the Netherlands

VOIVV1.5052

Track 1: Electro-optical Telescope and Adaptive Optics			
	Location: Meeting Room 308		
	July 21, 2025		
14:00-14:25	Active Optical Supports for the Large-Aperture Rb-Sic Mirror (Invited) Jianli Wang Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China		
14:25-14:50	The General Extended-Object Wavefront Sensor: Principles and Applications (Invited) Sijiong Zhang 1.Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, China;2. Chinese Academy of Sciences Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, China;3. University of Chinese Academy of Sciences, China		
14:50-15:15	Precision Tracking Control for Ground-Based Large Optical Telescopes (Invited) Yongting Deng Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China		
15:15-15:30	Coaxial Spherical Parallel Tracking Frame Xiufeng Liu Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China		
15:30-15:50	Break		
15:50-16:15	The Development of "Stage-V" Spectroscopic Telescope: MUST (Invited) Zheng Cai Tsinghua University, China		
16:15-16:40	Optical System Design and Active Alignment Methods for Wide-Field Astronomical Telescopes (Invited) Zhengyang Li Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, China		
16:40-17:05	Development of a Imaging Array Based on Kinetic Inductance Detectors for the Mid- to-Far-Infrared (Invited) Ran Duan The National Astronomical Observatories of the Chinese Academy of Sciences, China		
17:05-17:20	Analysis of Multi-wavelength Co-phasing Detection Method for Segmented Mirrors Using Enumeration: Single-wavelength Detection Error, Wavelength Selection, Detection Range and Accuracy Pengfei Wang Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, China		

VOIV715652

Track 1: Electro-optical Telescope and Adaptive Optics		
Location: Meeting Room 308		
	July 22, 2025	
08:30-08:55	Chinese Giant Solar Telescope and its High-Resolution Observation System (Invited) ZhenYu Jin 1.Yunnan Observatories, Chinese Academy of Sciences, China; 2.Yunnan Key Laboratory of Solar Physics and Space Science, China; 3.Yunnan Engineering Center for Applied Astronomical Technology, China	
08:55-09:20	The progress of the Cool Planets Imaging Coronagraph (CPI-C) on China Space Station survey Telescope (CSST) (Invited) Jiangpei Dou Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, China	
09:20-09:45	Wavefront Sensing with a Large Aperture Patched Telescope (Invited) Qichang An Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China	
09:45-10:00	The Real-Time Controller for the Glao System of 2.5-Meter Wide-Field and High- Resolution Solar Telescope Nanfei Yan 1.National Laboratory on Adaptive Optics, China; 2.Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.University of Chinese Academy of Sciences, China	
10:00-10:15	Electromagnetically Driven 4×4 Micromirror Arrays Based on FPCB Manpeng Chang Chongqing University, China	
10:15-10:35	Break	
10:35-11:00	Processing and Testing Technology for Main Mirrors of Large Telescopes (Invited) Yongqian Wu Institute of Optics and Electronics, Chinese Academy of Sciences, China	
11:00-11:25	Initial Site Monitoring Plan for the 14.5 Meter Optical/Infrared Telescope (Invited) Lu Feng National Astronomical Observatories, Chinese Academy of Sciences, China	
11:25-11:50	An Overview of the 4.2-meter Ground-Based Dedicated Astrometric Telescope Adaptive Optics System (Invited) Lingxiao Li Institute of Optics and Electronics, Chinese Academy of Sciences, China	
11:50-12:05	First Laboratory Results on the Correction Capability of a Ground-Layer Adaptive Optics System Ziming Li 1.National Laboratory on Adaptive Optics, China; 2.Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.University of Chinese Academy of Sciences, China	

VOIVVIJ See 22

12:05-12:20	Study of the Average Short Exposure Transfer Function in the Presense of Atmospheric Turbulence Gang Hu Yunnan Observatories, Chinese Academy of Sciences, China
12:20-12:35	Effects of Assembly Angular Errors in Chiral Phase Mask on Passive Ranging Accuracy Jiajun Lin National University of Defense Technology, China
12:35-14:00	Lunch
14:00-14:25	Advancing Adaptive Optics at the Large Binocular Telescope (Invited) Joseph Shields Large Binocular Telescope Observatory, United States
14:25-14:50	Progress in Sodium Guide Star Laser based on Raman Laser Technology (Invited) Yan Feng Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China
14:50-15:15	The Next Generation of Palomar Spectrograph(NGPS) for Hale Telescope (Invited) Hangxin Ji The Nanjing Institute of Astronomical Optics & Technology of the Chinese Academy of Sciences
15:15-15:40	Research on High-Resolution Astronomical Imaging of Faint Targets (Invited) Youming Guo Institute of Optics and Electronics, Chinese Academy of Science, China
15:40-15:55	Large-Aperture Electromagnetically-Driven Scanning Micromirror Based on Stainless Steel Manpeng Chang Chongqing University, China
15:55-16:10	Large-Guide-Region Wavefront Sensing for Solar GLAO: Modeling, Simulation, and Experimental Validation Yuhe Liu 1.National Laboratory on Adaptive Optics, China; 2.Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.University of Chinese Academy of Sciences, China

Track 2: Large and Ultra-Precision Optics Manufacturing			
	Location: 301A		
	July 21, 2025		
14:00-14:25	New Challenges in Optical Manufacturing for Laser Fusion (Invited) David Walker Zeeko Ltd., United Kingdom		
14:25-14:50	High-efficiency & Ultra-Precision Manufacturing of Aspherical Optics (Invited) Yunfeng Peng Xiamen University, China		
14:50-15:15	Plasma Figuring with Nanometric Accuracy (Invited) Hui Deng Southern University of Science and Technology, China		
15:15-15:40	Ultrahigh Precision Manufacture and Metrology of X-Ray Optics at Tongji University (Invited) Jun Yu Tongji University, China		
15:40-16:00	Break		
16:00-16:25	Mechanism and Process of Ultra-precision Grinding for Complex Optics (Invited) Changsheng Li Xi'an Jiaotong University, China		
16:25-16:50	Zernike by One Pascal Triangle: a High Performance, Low Memory Cost and Flexible Computation Scheme for Zernike Polynomials (Invited) Weijun Chen Carl Zeiss Group, Germany		
16:50-17:15	Qualifire - a New Generation of Phase Shifting Interferometer (Invited) Jason Zhang Zygo Corporation, United States		
17:15-17:30	High-Convergence-Ratio Ion Beam Figuring Method Based on Weight Dynamic Adjustment and Parameter Mapping Hongyu Zou National University of Defense Technology, China		

VOIV715652

Ti	rack 2: Large and Ultra-Precision Optics Manufacturing
	Location: 301A
	July 22, 2025
08:30-08:55	Defect Detection of Aspheric Surfaces (Invited) Dong Liu Zhejiang University, China
08:55-09:20	Interferometric Test Technology and Instruments of Multi-Scale Surface Profile (Invited) Zhishan Gao Nanjing University of Science and Technology, China
09:20-09:45	Fourier Convmingolution–Parallel Neural Networkframework with Library Matching for Multi–Toolprocessing Decision–Making in Optical Fabrication (Invited) Chaoyang Wei Shanghai Institute of optics and fine mechanics, China
09:45-10:00	Effects of Manufacturing Defects on the Laser-Induced Damage Performance of Wavelength Separation Films Shichen Shen Laser Fusion Research Center, China Academy of Engineering Physics, China
10:00-10:15	Mechanisms, Processing Strategies, and Emerging Applications of Water-jet Guided Laser Processing Technology of Single-Crystal Diamond Shuiwang Wang Harbin Institute of Technology, China
10:15-10:35	Break
10:35-11:00	Design of the Vertical Ultra Precision Grinding Machine for Large Aperture Optics (Invited) Bo Wang Harbin Institute of Technology, China
11:00-11:25	Research on Testing Complex Optical Surface by Micro-Oct (Invited) Yukun Wang Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China
11:25-11:50	Dual-Robot Collaborative Polishing Technology for Ultra-Lightweight Large- Aperture Reflectors (Invited) Yongsheng Yao Xi 'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, China
11:50-12:05	Research on Automated Water-jet Guided Laser Processing Technology Based on Visual Inspection and Acoustic Emission Monitoring Ding Ye Harbin Institute of Technology, China
12:05-12:20	In-situ Nanometric Deflectometry via Synchronized Calibration Ruiyang Wang School of Electronics and Information Engineering, Sichuan University, China

VOIVVIJ 2052

12:20-12:35	Concept of a Viscoelastic Polishing Tool Based on Shear-stiffening Properties for Aspheric Surfaces Figuring Jiahao Yu University of Electronic Science and Technology of China, China
12:35-14:00	Lunch
14:00-14:25	Progress in Advanced Optical Manufacturing Technology of NIAOT (Invited) Zhonghua Wu Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, China
14:25-14:50	Research on Ultra-Precision Polishing Technology of Cordierite Optical Surface (Invited) Jiaoteng Ding Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, China
14:50-15:15	Computer Generated Holograms in Optical Surface Metrology and Alignment of Telescopes (Invited) Shanyong Chen National University of Defense Technology, China
15:15-15:40	High-precision Testing of large-aperture highly lightweight space mirrors (Invited) Mengjuan Li Beijing Institute of Space Mechanics & Electricity, China
15:40-15:55	Analysis of the Influence of Mass Defects in Hemispherical Resonators on Quality Factors Qingheng Liu 1.National Key Laboratory of Equipment State Sensing and Smart Support , College of Intelligence Science and Technology, National University of Defense Technology, China;2. Hunan Key Laboratory of Ultra-Precision Machining Technology, China
15:55-16:20	Break
16:20-16:45	Field Assisted Ultaprecision Manufacturing of Microstructure Array (Invited) Xingzhan Li Advanced manufacturing LAB, Huawei Technologies, China
16:45-17:10	Performance Tuning and Preparation Technologies of Low-Thermal-Expansion Polycrystalline Ceramics (Invited) Haibin Zhang Institute of Optics and Electronics, Chinese Academy of Sciences, China
17:10-17:35	Advances in X-ray Optics Technology of HEPS (Invited) Ming Li Institute of High Energy Physics, Chinese Academy of Sciences, China
17:35-18:00	Ultra-Precision Turning of Complex Surfaces: Technology and Applications (Invited) Shijie Li Xi'an Technological University, China

VOIV715652

18:00-18:25	Ultra-precision Testing and Fabrication Techniques of Spherical/Aspheric Surface (Invited) Xiaochuan Hu Institute of Optics and Electronics, Chinese Academy of Sciences, China
18:25-18:40	Data-Driven Precision Extraction and Separation of Spatial Band Errors Yuan Liu Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, China
18:40-18:55	Design and Implementation of a Six-Axis, Five-Linkage Grinding Machine Tool for Optical Element Lin Sun Xi'an Jiaotong University, China

VOIVVIJ See 22

	Track 3: Extreme Micro/Nano Manufacturing
	Location: 301C
	July 21, 2025
14:00-14:25	Nanoscale 3D Printing Of Structural Colors and Multi-Spectral Filters For Light Control (Invited) Joel Yang Singapore University of Technology and Design, Singapore
14:25-14:50	Grayscale Lithographic Nanofabrication and Applications (Invited) Wendi Li The University of Hong Kong, China
14:50-15:15	Large-Deformation Manufacturing of Silicon-Based Nano-Kirigami Structures and its Application in Information Encryption Display (Invited) Jiafang Li Beijing Institute of Technology, China
15:15-15:40	Fabrication of Large-Scale High-Precision Gratings and Their Application (Invited) Wenhao Li Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, China
15:40-16:00	Break
16:00-16:25	Structured Optical Nano Probes and the Applications (Invited) Shuming Yang Xi'an Jiaotong University, China
16:25-16:50	Metasurface-based Advanced Imaging and Display (Invited) Cheng Zhang Huazhong University of Science and Technology, China
16:50-17:15	Key Technologies for Ultra-precision Manufacturing and Metrological Value Transfer of Quantized Grating Reference Materials (Invited) Xiao Deng Tongji University, China
17:15-17:30	Proximity Effect Correction in Electron Beam Lithography Using a Composite Function Model of Electron Scattering Energy Distribution Qingyuan Mao Tongji University, China

VOIVVIJ 5052

	Track 3: Extreme Micro/Nano Manufacturing
	Location: 301C
	July 22, 2025
08:30-08:55	Research Development and Applications of Extreme Ultraviolet (EUV) Light Sources (Invited) Nan Lin Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China
08:55-09:20	Atomic Migration and its Suppression in Metallic Nanostructuresby Helium Ion Radiation (Invited) Xin Cheng Southern University of Science and Technology, China
09:20-09:45	Foundation for Research and Technology Hellas (Invited) Emmanuel Stratakis University of Crete, Greece
09:45-10:10	Volume Production Methodology for Nil Manufacturing on 300mm Wafer with Surface Relief Gratings(Srg) (Invited) Ran Ji Qingdao Germanlitho Co., Ltd., China
10:10-10:35	Break
10:35-11:00	Material Response to Laser Energy Deposition: the Role of Defects (Invited) Wolfgang Kautek University of Vienna, Department of Physical Chemistry, Austria
11:00-11:25	Micro/Nano Processing of Materials and Functional Devices with Ultrafast Laser (Invited) Jianfeng Yan Tsinghua University, China
11:25-11:50	Applications of Domestic Ion Beam Equipment in Micro/Nano - Optics (Invited) Ming Ji IBDTEC, China
11:50-12:05	3D Integration of Multifunctional Fiber-Optic Sensors via Femtosecond Laser Direct Writing Xuhao Fan Huazhong University of Science and Technology, China
12:05-12:20	Super Resolution Microscopy Imaging assisted by Liquid Microlens and Light Field Reconstruction via Its Arrays Tongkai Gu Xi'an University of Architecture and Technology, China
12:20-12:35	Monitoring Energy-Dependent Ultrafast Laser Manufacturing Inside Gallium Arsenide by Fluorescence Imaging Weiyu Zhu Beijing Institute of Technology, China
12:35-14:00	Lunch

VOIVVIJ 5052

14:00-14:25	Femtosecond Laser Micro/Nanostructuring and Interfacial Optical Modulation (Invited) Dongshi Zhang Shanghai Jiao Tong University, China
14:25-14:50	New Developments in Novel Submerged Pulsating Air Jet Polishing Process (Invited) Yanjun Han Southwest Jiaotong University, China
14:50-15:05	In Situ Vibration-Assisted Magnetorheological Polishing Based on Frequency Band Error Suppression Pengxiang Wang National University of Defense Technology, China
15:05-15:20	Exploration of Photonic Crystals for Super-Resolution Lithography Gaofeng Liang Chongqing University, China
15:20-15:35	Enhanced Coupling Efficiency in Micro-ring Resonators through Two-Photon-Printed Tapered Waveguides Kaixiong Shao Nanophotonics Research Center, Shenzhen University, China
15:35-15:50	Optimizing and well-Controlled Grayscale Electron Beam Lithography for Planar Dual Blazed Grating Fabrication Liang Liu Tongji University, China
15:50-16:20	Break
16:20-16:45	Medical Micro/Nanorobots Based on Laser Precision Manufacturing (Invited) Zhuochen Ma Shanghai Jiao Tong University, China
16:45-17:10	The Fabrication of Conformal Ultra-thin Ag Film on Curved Substrates (Invited) Heyan Wang Harbin Institute of Technology, China
17:10-17:20	Study on Magnetically Controlled Laser-Induced Active Plasma-Assisted Ablation of Diamond Qiuling Wen Huaqiao University, China

Trac	k 4: Optical Field Manipulation: Principles and Applications
	Location: 302A
	July 21, 2025
14:00-14:25	Metasurfaces: From 1.0 to 2.0 (Invited) Lei Zhou Fudan University, China
14:25-14:50	High-Performance All-Dielectric Metasurfaces and Their Applications (Invited) Shumin Xiao Harbin Institute of Technology, China
14:50-15:15	Meta-Microscope: Approaching High Resolution and Wide Field-of-View (Invited) Tao Li Nanjing University, China
15:15-15:40	Optical Sensing Based on Optical Frequency Combs (Invited) Baicheng Yao University of Electronic Science and Technology of China, China
15:40-16:00	Break
16:00-16:25	Metasurface Polarization Optics (Invited) Zilan Deng Jinan University, China
16:25-16:50	End-to-End Inverse Design Strategy for Metasurface Holography and Hybrid Optical System (Invited) Lingling Huang Beijing Institute of Technology, China
16:50-17:15	1.79-GHz Acquisition Rate Absolute Distance Measurement with Lithium Niobate Electro-Optic Comb (Invited) Yang Li Sun Yat-sen University, China
17:15-17:30	Metasurface-Based Multichannel Image Display and Information encryption Juan Deng Zhejiang University of Technology, China
17:30-17:45	Research on Multifunctional Meta-devices via Polarization Multiplexing Jiaxin Li Wuhan University of Technology, China

Tracl	k 4: Optical Field Manipulation: Principles and Applications
	Location: 302A
	July 22, 2025
08:30-08:55	The Road Towards all-Spectrum Femtosecond White Laser (Invited) Zhiyuan Li South China University of Technology, China
08:55-09:20	Versatile Plasmonic Colors with Pixelated Metasurface (Invited) Maowen Song Nanjing University, China
09:20-09:45	Light Field Manipulation with Nonlinear Optical Metasurfaces (Invited) Guixin Li Southern University of Science and Technology, China
09:45-10:00	Nanoscale Optical Memory Based on Dual-Beam Writing and Dual-Beam Reading Jing Wen Zhangjiang Laboratory, China
10:00-10:15	Chiral Molecular Separation Based on Opposite Circularly Polarized Light Interaction Wen Yang Dalian University of Technology, China
10:15-10:35	Break
10:35-11:00	Plasmonic Printing of High-Performance Metal Oxide Electronics Under Room Temperature (Invited) Dangyuan Lei City University of Hong Kong, China
11:00-11:25	Research on Multifunctional Planar Optical Imaging Based on Liquid Crystals (Invited) Guoxing Zheng Wuhan University, China
11:25-11:40	Super-Resolution Metalenses and Their Applications in Optical Microscopy Yi Zhou Chongqing University, China
11:40-11:55	Two-dimensional Acoustic Tunable Transmission Cloaking Based on Tunneling Effect Zeru Liu Dalian University of Technology, China
11:55-12:10	Ultra-Compact and Power-Efficient Acousto-Optic Modulator on Polymer-Loaded Lnoi Integrated Platform Zhi Jiang Xidian University, China
12:10-12:25	Design and Fabrication of Multi-Surface Continuous Phase-Shaping Devices Wei Liao Laser Fusion Research Center, China
12:25-14:00	Lunch

VOIV/VI205

14:00-14:25	Multimode Fiber Assistant Random Laser and Application (Invited) Weili Zhang University of Electronic Science and Technology of China, China
14:25-14:50	Strong Light-Matter Interactions Based on Bound States in the Continuum and Their Applications (Invited) Wei Wang Sichuan University, China
14:50-15:15	Electrically Tunable Optical Metasurfaces Using MEMS Mirrors (Invited) Fei Ding Eastern Institute of Technology, Ningbo, China/University of Southern Denmark, Denmark
15:15-15:40	High Performance Optoelectronic Devices Based on Compound Semiconductor Heterostructures (Invited) Jiang Wu Jiang Wu, University of Electronic Science and Technology of China, China
15:40-15:55	Tilt Angle -Modulated Metasurfaces for Multi-Dimensional Optical Field Control Zhilin Teng HuaZhong University of Science and Technology, China
15:55-16:20	Break
16:20-16:45	Spectral Regulation and Applications of Rare Earth Optical Materials (Invited) Gongxun Bai China Jiliang University, China
16:20-16:45 16:45-17:00	Gongxun Bai
	Gongxun Bai China Jiliang University, China Large-Scale Fabrication Technology of Metasurface Condensers Liangui Deng
16:45-17:00	Gongxun Bai China Jiliang University, China Large-Scale Fabrication Technology of Metasurface Condensers Liangui Deng Wuhan University of Technology, China A Comatic Holographic Metasurface for Laser Beam Angle Gauge with Ultra-wide Detection Range Shibin Jiang
16:45-17:00 17:00-17:15	Gongxun Bai China Jiliang University, China Large-Scale Fabrication Technology of Metasurface Condensers Liangui Deng Wuhan University of Technology, China A Comatic Holographic Metasurface for Laser Beam Angle Gauge with Ultra-wide Detection Range Shibin Jiang University of Electronic Science and Technology of China, China High Efficiency Bic Membrane Metasurface for Terahertz Beam Deflecion Longqing Cong

	Track 5: Novel Optoelectronic Materials
	Location: VIP3-1
	July 21, 2025
Time	Content
14:00-14:25	Metasuface-based Vectorial Field Modulation (Invited) Dandan Wen Northwestern Polytechnical University, China
14:25-14:50	3D Nano-Printing of Low-Index Photonic Structures for Optical Security (Invited) Hongtao Wang Singapore University of Technology and Design, Singapore
14:50-15:15	Light-Driven Bionic Snapping Liquid Crystal Elastomer Soft Actuator (Invited) Lujian Chen Xiamen University, China
15:15-15:40	Liquid Crystal Metasurface-Enabled Hyperspectral Single-Pixel Imaging (Invited) Haining Yang Southeast University, China
15:40-16:00	Break
16:00-16:25	Research Progress of Liquid Crystal-Based Laser Phased Array Technology (Invited) Xiangjie Zhao Institute of Fluid Physics, China Academy of Engineering Physics, China
16:25-16:50	Chiral Plasmonic Nanoparticles and Their Enhancement of Chiroptical Responses (Invited) Jianfang Wang The Chinese University of Hong Kong, China
16:50-17:15	Light-Electric Field Tunable Liquid Crystal Elastomer: Polarization Manipulation and Active Metasurface (Invited) Dan Luo Southern University of Science and Technology, China
17:15-17:30	Terahertz Optical Pattern Recognition with Rotation and Scaling Enhanced by a 3D-Printed Diffractive Deep Neural Network Chenjie Xiong Beijing Institute of Technology, China

VOIV715652

	Track 5: Novel Optoelectronic Materials
	Location: VIP3-1
	July 22, 2025
08:30-08:55	Strain and Local Field Engineering in Transition Metal Dichalcogenide Monolayers with Plasmonic Platforms (Invited) Dong Wook Kim Ewha Womans University, Korea
08:55-09:20	Structured Light Generations and Modulations by Spherulite Crystals (Invited) Jingbo Sun Tsinghua University, China
09:20-09:45	Observation of Terahertz Cavity Magnon Polaritons in a Canted Antiferromagnet RFeO ₃ Crystals (Invited) Guohong Ma Shanghai University, China
09:45-10:00	3D-Printed Terahertz Beam Meta-Deflector Based on the Tunable Doublet Xudong Wu Beijing institute of technology, China
10:00-10:15	Long-Wave Infrared Detection Devices Based on Arrayed Graphene Nanostructures Xiaoping Huang University of Electronic Science and Technology of China
10:15-10:35	Break
10:35-11:00	Semiconductor Nanowire Array Devices and Applications (Invited) Lan Fu Australian National University, Australia
11:00-11:25	Hierarchical Liquid Crystal Microstructures for Multi-Degree Optical Field Manipulation (Invited) Wei Hu Nanjing University, China
11:25-11:50	Liquid Crystalline Ordered Structures Towards Multi-degree-of-freedom Optical Field Modulation (Invited) Zhigang Zheng East China University of Science and Technology, China
11:50-12:05	Ion Beam Modification of Dielectric Materials for Optoelectronic Applications Sun Xiaoli Shandong university, China
12:05-12:20	Rolled-up Monolayer MoS ₂ for Improved Hydrogen Evolution Reaction Ai Wang Sichuan Normal University, China
12:35-14:00	Lunch

VOIVIVI205

14:00-14:25	High-Quality Large-Scale ZnTe Single Crystals for Broadband Terahertz Detection, Material Characterization, and Nondestructive Imagination (Invited) Yadong Xu Key Laboratory of Radiation Detection Materials and Devices (MIIT), School of Materials Science and Engineering, Northwestern Polytechnical University, China
14:25-14:50	Ultrafast Photocurrent in Photoferroelectric α-In ₂ Se ₃ Observed by Terahertz Emission Spectroscopy (Invited) Xinlong Xu Northwest University, China
14:50-15:15	Investigation of Optical and Terahertz Properties of Nanomaterials for Advanced Optoelectronic Device Design (Invited) Burdanova Maria Moscow Institute of Physics and Technology, Russia
15:15-15:40	Optimizing Thermochromic Vo ₂ -Based Multilayer Structures by Sputtering Techniques and Simulation (Invited) Martin Becker Justus Liebig University, Germany
15:40-16:05	Parallel Processing Method for Multi-Spectral Images Based on Multi-degree-of- freedom Light Field Control (Invited) Hongxiang Guo Beijing University of Posts and Telecommunications, China
16:05-16:20	Break
16:05-16:20 16:20-16:45	Break Van Der Waals Materials for Tunable Optics and Plasmonics (Invited) Jinghua Teng Agency for Science, Technology and Research, Singapore
	Van Der Waals Materials for Tunable Optics and Plasmonics (Invited) Jinghua Teng
16:20-16:45	Van Der Waals Materials for Tunable Optics and Plasmonics (Invited) Jinghua Teng Agency for Science, Technology and Research, Singapore Vanadium Dioxide-Doped Perovskite Heterojunction for Terahertz Optical Modulation (Invited) Bo Zhang
16:20-16:45 16:45-17:10	Van Der Waals Materials for Tunable Optics and Plasmonics (Invited) Jinghua Teng Agency for Science, Technology and Research, Singapore Vanadium Dioxide-Doped Perovskite Heterojunction for Terahertz Optical Modulation (Invited) Bo Zhang Capital Normal University, China Laser-Induced Graphene for Terahertz Metasurface Applications (Invited) Bin Hu

VONV115052

Track 6: Optical Sensing and Optical Communication		
Location: Meeting Room 307		
July 21, 2025		
14:00-14:25	Quartz-Enhanced Laser Spectroscopy Gas Sensing (Invited) Yufei Ma Harbin Institute of Technology, China	
14:25-14:50	Advances and Applications of Distributed Vibration Sensing Technology (Invited) Tao Zhu Chongqing University, China	
14:50-15:15	Acoustic Detection Technology and Applications Based on Enhanced Sensing Optical Cable (Invited) Qizhen Sun Huazhong University of Science and Technology, China	
15:15-15:40	All-Fiber Multifunction-Integrated Devices (Invited) Fei Xu Nanjing University, China	
15:40-16:00	Break	
16:00-16:25	Chirality-/Plasmon-Mediated Antenna-Reactor Nanostructures for Sustainable Energy and Cancer Therapy (Invited) Dong Ha Kim Ewha Womans University, Korea	
16:25-16:50	Athermal Forward Stimulated Brillouin Scattering (Invited) Yongkang Dong Harbin Institute of Technology, China	
16:50-17:05	Modulation-simplified and Narrow-linewidth FMCW Laser Using Misaligned Grating External Cavity Fei Duan Tianfu Xinglong Lake Laboratory, China	
17:05-17:20	Design and Optimization of Pressure Sensors Based on Long-Period Gratings Ying Chen Southwest Jiaotong University, China	
17:20-17:35	A High-Precision Rapid Processing Approach for Insulating Surface Point Clouds of High-Voltage Cable System Installation Based on Surface Dual-Modal Geometric Mapping with Generatrix Distance-Preserving Unfolding Jian Luo Shanghai Hinner Zenergy Technology Co., Ltd., China	

	Track 6: Optical Sensing and Optical Communication		
Location: Meeting Room 307			
July 22, 2025			
08:30-08:55	Generation and Applications of All-Fiber Second-Order Nonlinear Effects (Invited) Bigiang Jiang Northwestern Polytechnical University, China		
08:55-09:20	Portable Optical Fiber Sensors Integrated with Smartphone for Healthcare Monitoring (Invited) Rui Min Beijing Normal University, China		
09:20-09:45	Silicon-Based Optoelectronics: Key Technology for Miniaturization of Optical Communication and Sensing Systems (Invited) Xiwen He Hangzhou Aijie Optoelectronic Technology Co.Ltd., China		
09:45-10:00	A Hybird Metalens for 150°-Fov Thermal Scanning Imaging with 2k Resolution Kun Zheng University of Electronic Science and Technology of China, China		
10:00-10:15	Analysis of Reflectance Effects in Fiber-Optic FP Interferometric Displacement Measurement Qi Liu College of Intelligence Science and Technology, China		
10:15-10:35	Break		
10:35-11:00	Research of Optical Fiber Spr Sensing Technology for Early Tumors Screening (Invited) Kun Liu Tianjin University, China		
11:00-11:25	High-Sensitivity Mid-to-Far Infrared Photodetectors and Their Applications (Invited) Qing Li Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China		
11:25-11:50	Time-Frequency Multiplexing Fiber-Based Integrated Sensing and Communication (F-ISAC) (Invited) Haijun He Southwest Jiaotong University, China		
11:50-12:15	Microcavity Laser Immunosensors (Invited) Yuan Gong University of Electronic Science and Technology of China, China		
12:15-12:30	Light Field Image Devices Based on High-Precision icro-and Nano-Fabrication Technology Su Shen Simax Shanghai Company Limited		

VOIVVIJ 5052

Track 7: Intelligent Optoelectronic Technology		
Location: 306		
July 21, 2025		
14:00-14:25	Computational Optical Fluorescence Imaging Through Scattering Media using Transport of Intensity Equation (Invited) Osamu Matoba Kobe University, Japan	
14:25-14:50	Deep Learning for Computational Imaging: from Data-Driven to Physics-Enhanced Approaches (Invited) Fei Wang Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China	
14:50-15:15	Squeezed Light Generation And its Applications in Quantum Information (Invited) Yaohui Zheng Shanxi University, China	
15:15-15:40	Ai-Enabled 3d Imaging and Metrology: a Follow-up Approach From Sino-German Joint Program (Invited) Xiang Peng Shenzhen University, China	
15:40-16:00	Break	
16:00-16:25	Fabrication of Light Field Manipulation Devices by Polarization Holography (Invited) Xiaodi Tan Fujian Normal University, China	
16:25-16:50	Dynamic Frequency Response Characterization of High-Speed Optoelectronics Chips and Devices (Invited) Shangjian Zhang University of Electronic Science and Technology of China, China	
16:50-17:15	Ptychographic Imaging and Optical Encryption (Invited) Yishi Shi University of Chinese Academy of Sciences, China	
17:15-17:30	Hyperspectral Imaging-Based Detection Technology for Immersion Filling States in Micro/nano Structures Zirong Wang Institute of Optics and Electronics, Chinese Academy of Science	

	Track 7: Intelligent Optoelectronic Technology	
	Location: 306	
	July 22, 2025	
08:30-08:55	Optical-Addressed Dynamic Meta-Holography (Invited) Hui Gao Huazhong University of Science and Technology, China	
08:55-09:20	Photonic Reservoir Computing for Prediction of Spatiotemporal Dynamics Spatiotemporal Dynamics (Invited) Liyue Zhang Southwest Jiaotong University, China	
09:20-09:45	Artificial Neural Networks Enabled by Nanophotonics (Invited) Qiming Zhang University of Shanghai for Science and Technology, China	
09:45-10:00	Fabrication of Holographic Optical Elements with Polarization Holography Yi Yang Fujian Normal University, China	
10:00-10:15	Improved Homogeneity of Photopolymer Materials Jingjun Huang Fujlan Normal University, China	
10:15-10:35	Break	
10:35-11:00	High-Speed Multi-Focal Laser Scanning Mesoscopy (Invited) Yi He SIBET, China	
11:00-11:25	3D Ultra-Broadband Optically Dispersive Micro-Nanostructures Embedded in Transparent Dielectrics for Spectroscopic Applications (Invited) Bo Zhang Zhejiang University, China	
11:25-11:50	Metasurface-Based Multidimensional Optical Imaging (Invited) Ting Xu Nanjing University, China	
11:50-12:05	Orbital Angular Momentum Detector Based on Polarization Holography Technology Jun Xie Fujian Normal University, China	
12:05-12:20	Spectrum Aggregation Method for Resonant MEMS Micromirror Based FMCW LiDAR Fu Zhu Nanjing University of Science and Technology, China	
12:20-12:35	Adaptive Homomorphic Filtering for Intensity Uniformization in Holographic Data Storage Hongjie Liu Fujian Normal University, China	
12:35-14:00	Lunch	

VOIV715652

14:00-14:25	High-Precision Infrared Polarization Detection Based on Optoelectronic Metadevices (Invited) Jing Zhou Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, China
14:25-14:40	Digital Super-Oscillation Uniting Residual Dense Network for Super-Resolution Imaging Na Yao University of Electronic Science and Technology of China, China
14:40-14:55	PIV-based Transient Flow Field Characterization through Suspended Particulate Tracking in Water Congzheng Wang Institute of Optics and Electronics, Chinese Academy of Sciences, China
14:55-15:10	High-Precision Measurement Method of Laser Divergence Angle Based on Interference and Micro-Focusing Daokuan Guo North China Institute Of Aerospace Engineering, China
15:10-15:25	Data-driven Design of Multi-band Transparent Microwave-absorbing Metamaterial with cVAE Zhizhen Li Northwestern Polytechnical University, China

VOIVVIJ See 22

Track 8: Optoelectronic Fusion Sensing Technology	
Location: 305	
	July 21, 2025
	Presider: Lianshan Yan, Southwest Jiaotong University, China
14:00-14:10	Welcome Speech
14:10-14:40	Architectural Design of "Al+Optics" Xiaopeng Shao Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, China
14:40-15:10	Computing 3D Information and Applications Yiguang Liu Sichuan University, China
15:10-15:40	Automatic lens design based on differentiable ray tracing Yueting Chen Zhejiang University, China
15:40-16:00	Break
Presider: Tao Zho	u, The 29th Research Institute of China Electronics Technology Group Corporation (CETC), China
16:00-16:30	High-Power Optical Field Modulation Based on Micro/Nanostructures and Its Applications Xiong Li Institute of Optics and Electronics, Chinese Academy of Sciences, China
16:30-17:00	Microwave Photonics-Empowered Integrated Communication and Sensing Convergence Technology Zhiyu Chen The 29th Research Institute of China Electronics Technology Group Corporation (CETC), China
17:00-17:30	Electronic-Photonic Integrated Linear Phase Sensing Technology for Closed- Loop Control: Requirements, Challenges, and Examples Min Tan Huazhong University of Science and Technology, China

VOIVATT-SOS22

CONFERENCE ABSTRACTS

Plenary Talk Place: 3F Conventional Hall July 21, 2025 · 08:50–12:30

08:50-09:30

Meta Devices from Optics to Quantum

Din-Ping Tsai City University of Hong Kong, China

Abstract: Meta-devices enable mass-production of nano-arrays via semiconductor microelectronics, controlling the phase, polarization, and amplitude electromagnetic waves. This talk highlights optical meta-devices' design, fabrication, and applications in imaging, sensing, 6G, quantum light, and more, unlocking innovations in robotics, AR/VR, healthcare, and quantum technologies.

Specially engineered meta-structure components enable the mass production of artificial nano-array structures using advanced semiconductor microelectronics fabrication techniques. These components possess the capability to manipulate the phase, polarization, and amplitude of electromagnetic waves with exceptional precision. Meta-devices offer solutions to a wide range of pressing technological demands, including novel functionalities, compact size, lightweight design, enhanced efficiency, superior performance, broadband operation, reduced energy consumption, and seamless compatibility with semiconductor mass production technologies. Such attributes position meta-devices as transformative tools for addressing the challenges of next-generation applications.

This work presents a comprehensive overview of the design, fabrication, and emerging applications of optical meta-devices, including achromatic meta-lenses, advanced imaging systems, intelligent sensing plat-forms, vacuum ultraviolet light generation through nonlinear processes, and cutting-edge solutions for medical and biological imaging. Additionally, we highlight their pivotal roles in enabling technologies such as 6G communications, tunable meta-structures, and high-dimensional quantum light sources. These advancements demonstrate the transformative potential of meta-devices in driving the next generation of innovations across diverse fields, including micro-robotic vision, autonomous driving, particle sensing, virtual and augmented reality, personal security systems, biomedical devices, advanced healthcare solutions, and quantum information technologies. By opening new frontiers, optical meta-devices are prepared to redefine technological possibilities and catalyze progress across multiple disciplines.

Biography: Professor Din-Ping Tsai is currently Chair Professor of the Department of Electrical Engineering, City University of Hong Kong. He is an elected Fellow of AAAS, APS, COS, EMA, IEEE, JSAP, NAI, OSA, SPIE, PST, and AAIA, respectively. He is also an elected Member of the Hong Kong Academy of Engineering (HKAE), International Academy of Engineering (IAE), and Academician of the Asia-Pacific Academy of Materials (APAM), respectively. He is the author and co-author of 410 SCI papers, 70 book chapters and conference papers, and 39 technical reports and articles. He was granted 69 patents for 45 innovations. He was invited as an invited speaker for international conferences or symposiums more than 355 times (31 Plenary Talks, 66 Keynote Talks). He received more than 40 prestigious recognitions and awards, including "Mozi Award" from the International Society of Optical Engineering (SPIE) in 2018; "Global Highly Cited Researchers," by Web of Science Group (Clarivate Analytics) in 2020 and 2019, respectively; China's Top 10 Optical Breakthroughs in 2020 and 2018, respectively; 2024 Frontiers of Science Award; etc. He currently serves as a member of the editorial board of 12 prestigious Journals, and Editor of Light: Advanced Manufacturing, and "Photonics Insights," respectively.

V0MV11.50522

09:30-10:10

30 Years of Nanoimprint: Past Development and Current Momentum

L. Jay Guo University of Michigan, USA

Abstract: 2025 marks the 30th anniversary of nanoimprint lithography (NIL). Since its inception in 1995, and through global efforts over the past three decades, Nanoimprint has emerged as the primary alternative to EUV lithography for deep-nanoscale silicon electronics. The manufacturing quality of NIL was recognized by several semiconductor companies and has been actively evaluated for advanced semiconductor devices. Nanoimprinting's potential extends beyond silicon chip fabrication and wafer-scale application—it has demonstrated intriguing capabilities including high resolution, large-scale patterning, 3D capabilities, and low cost of ownership. NIL has also faced challenges such as defect density and quality concerns. Various technologies were developed over time. This talk aims to provide a balanced overview of the pros and cons of NIL, presenting the solutions and advancements that have shaped its progress. We will also describe some of our efforts and results at the University of Michigan that spans over a decade. The application of NIL in industrial manufacturing represents a significant milestone, which include advancements in semiconductor IC circuits, cutting-edge optical devices, and other innovative applications. It is anticipated that even more applications will emerge in the near future.

Biography: L. Jay Guo is a Professor of Electrical and Computer Engineering at the University of Michigan, where he joined in 1999 after his PhD and postdoc training, and Director of the Macromolecular Science and Engineering at UM. Professor Guo's lab is involved in interdisciplinary research, with activities ranging from polymer-based photonic devices and sensor applications, flexible transparent conductors, nanophotonics, structural colors and Al assisted design, hybrid photovoltaics and photodetectors, to nanomanufacturing technologies, and are contributed by students from Electrical Engineering and Optics, Macromolecular Science & Engineering, Applied Physics, Physics, and Mechanical Engineering. Prof. Guo has 295 journal publications; with citation more than 34,400 times, and an H-index of 92 (by google scholar). Some notable awards he received from recent years include 2023 Wise-Najafi Prize for Engineering Excellence in the Miniature World from University of Michigan, 2017 William Mong Distinguished Lecturer in Hong Kong University, and 2015 Monroe-Brown Research Excellence Award by the College of Engineering of University of Michigan. He is a fellow of IEEE and a fellow of Optica. His professional service includes Associate Editor of Optica (2018~2021); and currently member of the Editorial Advisory Board of Advanced Optical Materials, and Opto-electric Science, co-Editor-in-Chief of Micro and Nano Manufacturing. His entrepreneur activities include co-founding two startup companies to commercialize technologies from his lab.

VOIVIVI2022

10:30-11:10

Atomaterials for Sustainability

Baohua Jia

Royal Melbourne Institute of Technology (RMIT) University, Australia

Abstract: "Atomaterials" represents materials with at least one dimension on the atomic scale. Their properties depend on the precise configuration of their atoms. It is a new but rapidly developing field. A typical atomaterials is graphene, which is made of carbon atoms. Unlike diamond, in which the carbon atoms form a rigid three-dimensional structure, graphene is made of single layer of carbon atoms, bonded together in a two-dimensional honeycomb lattice. They show exceptional properties due to their atomaterials nature. Using atomaterials, our lab has been working on a range of innovations, at various stages of development, for example: A diurnal cooling film without consuming electricity. This film can cool the environment by up to 15°C without using any electricity. By integrating such a film into a building, the electricity used for air conditioning can be dramatically reduced. This will not only save electricity bills but also reduce greenhouse emissions; Heat-absorbing film, achieving over 97% of energy conversion rate with an ultrathin film arrangement. These materials play critical role in improving energy efficiency and providing innovative sustainable solutions for our society.

Biography: Distinguished Professor Baohua Jia is the inaugural Director of Centre for Atomaterials and Nanomanufacturing (CAN), a Key Chief Investigator (CI) of The Australian Research Council (ARC) Research Hub for Intelligent Energy Efficiency in Future Protected Cropping, a Key CI in ARC Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM) and Node Director of ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS). She is an elected Fellow of Australian Academy of Technological Sciences and Engineering (FTSE), and an elected Fellow of OPTICA and Institute of Materials, Minerals and Mining. Her research focuses on the fundamental light and nanomaterial interaction, in particular, laser manipulation of two-dimensional materials for effective harnessing and storage of clean energy from sunlight; purifying water and air for clean environment; imaging and spectroscopy and nanofabrication using ultrafast laser towards fast-speed all-optical communications and intelligent manufacturing.

VOIVIVI2022

11:10-11:50

Materials Solutions for Sustainability Challenges

Xiaobo Yin The University of Hong Kong, China

Abstract: Micro/nanostructured materials offer significantly new opportunities for high-efficiency devices and systems for energy harvesting, conversion and storage. There is, however, a tremendous gap between the proof-of-principle demonstrations at the small scale and the intrinsically large-scale real-world energy systems and sustainable applications. In this talk, I will give an overview of our research and, more specifically, present our recent development on how structured photonic materials address the challenge of the tremendous power hungry for space cooling, promote photosynthesis and crop yield in greenhouses, and beyond.

Biography: Dr. Xiaobo Yin received his PhD from Stanford University in 2008 and is currently a Professor of Mechanical Engineering and a Professor of Physics at the University of Hong Kong. He is a fellow of OSA and SPIE. Prior to joining the University of Hong Kong, he was the Bruce S. Anderson Faculty Fellow of the College of Engineering and Applied Sciences at the University of Colorado Boulder. His research focuses on nanostructured optical materials, radiative heat transfer, high-temperature materials, and scalable manufacturing. His works have been featured in numerous media outlets including Nature, Science, Physics Today, Scientific American, the Economists, and Forbes. He was a recipient of the 2017 Moore Inventor Fellowships, the 2017 Kavli Foundation Early Career Lectureship of Materials Science, and the 2022 Xplorer Prize. His work on passive radiative cooling was named one of the top 10 breakthroughs of the year 2017 by the Institute of Physics (IOP) Physics World and the top 10 most reviewed news by The Economists.

V0MV11.50522

11:50-12:30

Grayscale Laser Beam Lithography for Large Area Surface Engineering:

Accelerating the Lab-to-Fab Transition

Kahraman Keskinbora RAITH Laser Systems B.V, the Netherlands

Abstract: The rapid industrialization of micro- and nano-optics for consumer electronics demands manufacturing platforms that can reliably deliver complex features—free-form optical elements, stitch-free large-area gratings, deep microlens arrays, and holographic textures—at commercially viable speeds and costs.

Grayscale laser-beam lithography (GS-LBL) has evolved over the past four decades into a cornerstone technology for wafer-scale fabrication. When integrated with multibeam direct-write exposure, GS-LBL now emerges as an advanced manufacturing method for patterning surface-relief profiles on panel-scale glass substrates while eliminating the need for step-and-repeat recombination approaches, which are prone to stitching artifacts. Our latest generation systems pair deep-sub-micron level (<600 nm) critical dimension resolution with real-time 8-bit dynamic range grayscale capabilities and aerial throughputs above 500 mm²/ min, positioning it both as a competitive stand-alone solution for low- to medium-volume production and as a master origination tool for downstream processing, such as nano-imprint replication.

We will highlight recent achievements—including large area diffraction gratings, ultra-deep microlens arrays, holographic surfaces and diffusers—and present integrated workflows that link LBL to Raith's complementary direct-write and metrology platforms.

This closed-loop ecosystem accelerates design-to-prototype iteration, drives process control and metrology capabilities for yield improvement and shortens the lab-to-fab transfer cycle, thereby enabling cost-effective deployment of micro-/nano-textured optics across the next-generation consumer products.

Biography: Dr. Kahraman Keskinbora is a Netherlands based materials scientist and nanofabrication expert who is the Product Manager for Laser Beam lithography systems at Raith Group. After completing his B.Sc. and M.Sc. degrees in Materials Science and Nanotechnology, at the Andolu University in Türkiye, he earned his Ph.D. degree at the Max Planck Institute for Intelligent Systems and the University of Stuttgart, where he pioneered binary and grayscale ion beam lithography for high efficiency X-ray optics. Later, he led the Micro/Nano-Optics Research Group at MPI-IS, where his group developed the first ever 3 D nanoprinted polymer kinoform lenses for soft X-rays. A former visiting scholar at Harvard University and a DFG-funded Research Scientist at MIT, he has co-authored 40 plus papers, holds multiple patents on micro and nano optics. Dr. Keskinbora frequently presents at optics and nanotechnology conferences, leads professional workshops, and mentors early career researchers, reflecting his commitment to translating nanoscale research into practical photonics and lithography solutions.

Abstracts of invited talks and oral talks can be downloaded from AOMATT2025 platform (https://www.aomatt.org/).

VOIVVIJ 5052

POSTER LIST

Essay ID	Report
	Track 1: Electro-optical Telescope and Adaptive Optics
AOMATT2025-0402-1	A Large Field-of-View Calibration method for Static Aberrations in Multi- Conjugate Adaptive Optics Systems Junjie Li ^{1, 2, 3} , Qianhan Zhou ^{1, 2, 3} , Xian Ran ^{1, 2, 3} , Lanqiang Zhang ^{1, 2*} , Changhui Rao ^{1, 2*} 1.National Laboratory on Adaptive Optics, China; 2.Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.University of Chinese Academy of Sciences, China
AOMATT2025-0430-1	ICMOS Focal-Plane-Stitching-Based Image Shift Compensation Approach Xiaoxiao Sun ¹ , Xing Ful [*] , Peng Wang ¹ , Yue Zhao ¹ , Jiajun Li ¹ 1.Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, China
AOMATT2025-0512-7	Overview of Scientific Objectives in Planetary Ultraviolet Spectroscopic Shirui Zhang ^{1, 2} , Quanfeng Guo ^{1, 2*} , Yaohui Cheng ^{1, 2} 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China; 2.University of Chinese Academy of Sciences, China
AOMATT2025-0515-1	Characteristic Investigation of Golay12 Sparse Aperture Configuration Ruoqi Wang ^{1*} , Wenrui Wang ^{2*} , Bai Xueqian ³ , Shu Qingxin ¹ , Hu Jun ¹ , Ye Lingyun ¹ , Song Kaichen ² 1.College of Biomedical Engineering and Instrument Science, Zhejiang University, China; 2.Department of Aeronautics and Astronautics, Zhejiang University, China; 3.Ocean College, Zhejiang University, China
AOMATT2025-0526-1	Study on HUBS Satellite Mission Architecture and the Key Technologies of Mechanical and Thermal Engineering Wei Zhang ^{1, 2} , Jun Yu ¹ , Zhanshan Wang ^{1*} 1.Tongji University, China; 2.Shanghai Institute of Satellite Engineering, China
AOMATT2025-0619-15	Review of Focusing Mechanisms for Space Telescope Yaohui Cheng ^{1,2} , Quanfeng Guo ^{1,2*} , Shirui Zhang ^{1,2} 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China; 2.University of Chinese Academy of Sciences, China
AOMATT2025-0620-7	High Real-Time Surface Shape Control Based on FPGA Hardware Acceleration Wenjing Li ¹ , WangQiang ^{1*} 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China

AOMATT2025-0627-5	Spot image-based aberration correction caused by misalignment for off-axis reflective telescopes Wei Tang ¹ 1.The Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0627-6	Off-axis afocal system misalignment detection based on wavelet transform and improved ShuffleNetV2 Weihua Tang ¹ , Qiang Wang ^{1*} 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0629-15	A method for adjusting the deviation between the two axes of a laser communication turntable Yang Li ¹ 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0630-12	The simulation analysis and system manufacture of lightweighted steepbeamexpander Heng Zhu ^{1*} , Di long Wu ² , Zhigang Li ² , heng Zhou ² , Ping Ma ² 1.Laser Fusion Research Centre, China; 2.Laser Fusion Research Center, China
AOMATT2025-0630-16	Design of a Remote Control System for Scientific Cameras Based on ASCOM Alpaca and WEB Technology Qiwang Luo ¹ , Yu Liu ^{1*} , Tengfei Song ² , Qiang Liu ¹ , Feiyang Sha ¹ 1.Southwest Jiaotong University, China; 2.Yunnan Observatories, Chinese Academy of Sciences, China
	Track 2: Large and Ultra-Precision Optics Manufacturing
AOMATT2025-0513-1	Pulsed ion beam figuring technology for optical components Jingpeng Zhang ^{1, 2} , Guangqi Zhou ^{1, 2*} , Tian Ye ^{1, 2} , Shuo Qiao ^{1, 2} , Baoqi Gong ^{1, 2} , Feng Shi ^{1, 2} 1.College of Intelligence Science and Technology, National University of Defense Technology, China; 2.National Key Laboratory of Equipment State Sensing and Smart Support, College of Intelligence Science and Technology, National University of Defense Technology, China
AOMATT2025-0515-2	Tool Path Point Algorithm and Optimization for Freeform Surface CNC Machining YuMin Lan ¹ , PeiJi Guo ^{2*} , Xi Chen ² 1.Soochow University, China; 2.The Institute of Modern Optical Technology, Soochow University, China
AOMATT2025-0520-2	First-principles study of silicon-oxygen ratio on fused silica performance under ultraviolet laser irradiation Yichi Han ^{1*} 1.Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China
AOMATT2025-0528-1	Design of a Large-Angle Magnetic Field Generator for Virtual-Axis Magnetorheological Finishing of High-Steepness Optics Yiang Zhang ¹ , Xiaoqiang Peng ¹ , Fulei Chen ¹ , Hao Hu ^{1*} 1.National University of Defense Technology, China

VOIV/11.50522

AOMATT2025-0529-5	Optical Surface Measurement Based on Reverse Hartmann Test using Coaxial Illumination Yawen Luo ¹ 1.Beijing Institute of Technology, China
AOMATT2025-0610-4	A Fused Quartz Abrasive-Free Ultra-Smooth Processing Method Based on Catalytic Reaction Zhang Zhongxiang ¹ , Peng Wenxiang ¹ , Peng Xiaoqiang ¹ , Lai Tao ¹ 1.College of Intelligent Science, National University of Defense Technology, China
AOMATT2025-0618-12	Research on Dataset Optimization Technology of Process Decision-making for Supervised Learning Network in Ultra-Precision Optical Machining Haoni He ^{1*} 1.Department of Optics and Optical Engineering, University of Science and Technology of China Hefei, China
AOMATT2025-0618-4	Surface Error Map Interpolation Based on Generative Adversarial Networks for Ultra-Precision Optical Fabrication Songlin Wan ¹ , Hongyu Wang ^{1, 2} 1.Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China; 2.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, China
AOMATT2025-0618-8	Effects of flame plasma process parameters on surface roughness of fused silica Wang Hong ¹ , Fan Bin ¹ , Xin Qiang ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0619-10	High diffraction efficiency processing technology for large-sized nano-scale liquid crystal components Fu Guoquan ¹ , Zhang Fei ¹ , He Qiong ¹ , Zhang Qi ¹ , Li Xiong ¹ , Pu Mingbo ^{1*} , Luo Xiangang ^{1*} 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0619-19	Study of Flexible Grinding Technology Based on Industrial Robot Pengwei Zhao ¹ 1.Shanghai Institute of Technical Physics Chinese Academy of Science, China
AOMATT2025-0624-7	Research on Light Scattering Detection Technology of Surface Scratches on Optical Components Sun Hao ¹ , Zhong Hanxiu ¹ , Bai Long ¹ , Xu Jianfeng ¹ 1.Huazhong University of Science and Technology, China
AOMATT2025-0626-7	Method for Active Lap Deformation Calculation and Robot End-Effector Pose Derivation in large Off-Axis Aspherical Mirror Manufacturing Yujuan Zhang ¹ , Bin Fan ^{1*} 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0627-11	Design of a Small Beam Diameter Extraction System for Radio – Frequency Ion Source Based on Charged Particle Simulation Haojie Wang ¹ , Yifan Dai ^{1*} , Chunyang Du ^{1*} , Rucheng Xue ¹ 1.National University of Defense Technology, China

VOIV/11.50522

AOMATT2025-0628-10	Normal-height ambiguity elimination with reflection law in fringe-reflection stereo deflectometry Yong-Liang Xiao ^{1*} 1.Xiangtan University, China
AOMATT2025-0628-2	High Angular Tolerance Fiber-Optic Interferometric Probe: Optical System Design and Analysis Chenlong Ou ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciense, China
AOMATT2025-0629-1	Influence of Fabrication Errors on Imaging Performance for the 2.5-m Telescope Primary Mirror Yunfen Dong ¹ , Yiding Ping ² 1.Chinese Academy of Sciences Nanjing Astronomical Instruments Co., Ltd., China; 2.Purple Mountain Observatory, Chinese Academy of Sciences, China
AOMATT2025-0629-5	Study on impedance matching network characteristics and plasma state identification of RF ion sources Meng Liu ^{1, 2, 3} , Xiaoqiang Peng ^{1, 2, 3*} , Chaoliang Guan ^{1, 2, 3*} 1.College of Intelligent Science and Technology, National University of Defense Technology, China; 2.National Key Laboratory of Equipment State Sensing and Smart Support, China; 3.Hu'nan Key Laboratory of Ultra-precision Machining Technology, China
AOMATT2025-0630-10	Real-time Monitoring and Mechanism Study of Optical Ultra-precision Sub- aperture Polishing Process Based on Torque Sensing Zhiqiang Yang ^{1, 2} , Songlin Wan ^{2, 3*} 1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, China; 2.Precision Optical Manufacturing and Testing Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China; 3.High Power Laser Element Technology and Engineering Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China
AOMATT2025-0630-25	Super-smooth polishing of X-ray mirrors based on catalytic hydrolysis reaction Wenxiang Peng ¹ , Xiaoqiang Peng ^{1*} , Zhongxiang Zhang ¹ , Fulei Chen ¹ , Tao Lai ¹ , Hao Hu ¹ , Shuai Xue ¹ , Yupeng Xiong ¹ 1.National University of Defense Technology, China
AOMATT2025-0630-26	Sub-aperture Stitching Interferometry with a Dual-frequency Laser Interferometer Haomiao Li ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0630-31	Study on Single Point Diamond Turning Process of Calcium Fluoride Crystals at Large Cutting Depths Shouyi Sun ¹ 1.Shanghai Institute of Optics and Fine Mechanics, China
AOMATT2025-0630-32	Design and Verification of CFRP Thin-Walled Barrel Structure for Co-Axial Space Telescope Primary-Secondary Mirror Assembly Guorui Ren ¹ 1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, China

Track 3: Extreme Micro/Nano Manufacturing		
AOMATT2025-0512-1	Realization of Functional Silicon Nanowires Array via Laser Oxidation for Robust SERS Detection jingbo yin ¹ , minghui hong ^{1*} 1.Xiamen University, China	
AOMATT2025-0512-4	Chemical-assisted Laser Ablation Coupled with Ultrasonic Vibration for Enhanced SiC Wafer Thinning Qing Lei ¹ , Yiquan Qi ¹ , Minghui Hong ^{1*} 1.Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China	
AOMATT2025-0512-5	Heating-Assisted Laser Direct Writing of Low-Resistance Conductive Layers on Aluminum Nitride Ceramics Qian Sun ¹ , Minghui Hong ^{1, 2*} 1.Xiamen University, China; 2.Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, China	
AOMATT2025-0512-6	Realization of Tunable Optical Absorption on Zirconia Ceramic Surface via Pulse Laser Irradiation Zhekun Chen ¹ , Minghui Hong ¹ 1.Xiamen University, China	
AOMATT2025-0512-8	Heat-assisted Pulsed Laser Processing Induced Nano-cracks for Low Kerf- loss and High-surface Quality SiC Wafer Slicing Xiangfu Liu ¹ , Minghui Hong ^{1*} 1.Xiamen University, China	
AOMATT2025-0521-1	A Compact 3D Model For Laser Direct Writing Lithography Peng fei ¹ , Yang zeyu ¹ , Cao hao ² , Zhang yue ² , Gui chengqun ^{2*} 1.Wuhan University, China; 2.Wuhan university, China	
AOMATT2025-0526-6	Superhydrophobic multifocal microlens array with depth-of-field detection for humid environment CAO HAO ^{1*} , GUI CHENQUN ¹ 1.wuhan university, China	
AOMATT2025-0606-1	Optical storage and encryption based on ultrafast laser-induced micro- nanostructures Zhuo Wang ¹ 1.Zhejiang University, China	
AOMATT2025-0609-1	High-Selectivity Inductively Coupled Plasma Etching of HfO ₂ by using Metal Hard Mask Hanhao Wei ¹ , Yu Gu ¹ , Kaipeng Liu ¹ , Weisheng Yue ¹ , Yunfei Luo ^{1*} , Zeyu Zhao ¹ , Changtao Wang ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China	
AOMATT2025-0613-2	Three-Dimensional Topography Measurement of Curved Diffractive Microstructures Based on Laser Scanning Confocal Microscopy Stitching Yufang Zhou ^{1,2} , Junfeng Liu ^{1,2} , Huang Li ^{1,2} , Junren Chen ^{1,2} , Jianpeng Wang ^{1,2*} , Tao Lai ^{1,2,3*} 1.National Key Laboratory of Equipment State Sensing and Smart Support, National University of Defense Technology, China; 2.Hu'nan Key Laboratory of Ultra-precision Machining Technology, China; 3.Hu'nan Institute of Advanced Technology, China	

AOMATT2025-0613-3	High-efficiency metasurfaces down to the vacuum ultraviolet region zhihuai diao ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0617-11	Fabrication of low temperature SOC/SiO ₂ with low surface roughness for advanced nodes device manufacturing Bowen Li ¹ , Taozhe Duan ¹ , Pu Wang ¹ , Shenghao Yuan ¹ , Yan Wen ¹ , Bangwei Qiao ¹ , Yao Deng ¹ , Wei Li ¹ , Yao Xiang ^{1*} , Ping Gao ^{1*} 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0617-4	Femtosecond Laser-Induced Stress Relaxation Enables Non-Ablative Nano- Protrusion Formation on Amorphous Silicon Surfaces Huakun Zhong ^{1,2} , Tingting Zou ^{1,2,3} , Ziyuan Huang ^{1,2} , Kai Xu ^{1,2} , Xiao Sun ^{1,2} , Chen Wang ^{1,2} , Jianjun Yang ^{1,2,3} , Weijie Deng ^{1,2,4} , Zhiyu Zhang ^{1,2,4*} 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China; 2.University of Chinese Academy of Sciences, China; 3.GPL Photonics Laboratory, Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, China; 4.State Key Laboratory of Advanced Manufacturing for Optical Systems, China
AOMATT2025-0617-8	A 6-DOF Micro-Motion Mechanism for Wave Aberration Compensation of Photolithography Projection Objectives Shiyu Li ^{1, 2} , Chi Tu ^{1, 2} , Jingteng Liu ^{1, 2} , Yangyang Cheng ¹ , Junbo Liu ¹ , Ji Zhou ^{1*} 1.Institute of Optics And Electronics, Chinese Academy of Sciences, China; 2.University of Chinese Academy of Sciences, China
AOMATT2025-0618-10	Dual-Mode Surface Plasmon-Enhanced Spectroscopy Based on MoS ₂ - hybridized MIM Metasurface Ni Jiajie ¹ , Su Rui ¹ , Zhou Xiaoqi ¹ , Yu Pingshun ¹ , Chen Feihong ² , Li Ling ¹ , Zhu Jianqi ^{1*} , Su Yarong ¹ 1.Sichuan normal university, China; 2.Sichaun normal university, China
AOMATT2025-0618-16	Effect of Flat-Top Laser Spot Size on Impulse Coupling with Space Debris Xiang Zhang 1.China Academy of Sciences Institute of Optoelectronics, China
AOMATT2025-0619-13	WS2-MoS2 vertical van der waals heterostructure for sensitive and stable SERS detection Ting Wu ¹ , Jianqi Zhu ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0619-14	Selenium-Doped Monolayer MoS ₂ film for sensitive and stable SERS detection Rui Shu ¹ , Jianqi Zhu ^{1*} 1. Sichuan Normal University, China

AOMATT2025-0619-18	Advanced Hysteresis Compensation and Adaptive Control for Piezoelectric Actuators in Micro-Nano Systems Jiaqi Wang ^{1,2,3} , Hongwei Cao ^{1,2} , Yinghui Guo ^{1,2,3*} , Mingbo Pu ^{1,2,3} , Xiaoyin Li ^{1,2,3} , Haiqing Wang ^{1,2,3} , Hanxiang Yan ^{1,2,4} , Qiangqiang Liu ^{1,2,3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0619-21	Pixel-Wise integrated polarization HgCdTe detectors Xiaojia Liang ¹ 1.Tongji University, China
AOMATT2025-0623-1	LCDS witching Assisted Laser Micro-Lens Array Lithography For Non-Periodic Microstructure Fabrication Yuchao Zhu ¹ , Danmin Chen ¹ , Zhiwen Chen ¹ , Minghui Hong ^{1*} 1.Xiamen University, China
AOMATT2025-0623-2	Magnetic Field Enhanced Laser Drilling of SiC Substrates inside Chemical Solutions Yiquan Qi ¹ , Minghui Hong ^{1, 2*} 1.Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, China; 2.Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), China
AOMATT2025-0626-6	Physically Unclonable Function (PUF) Structure by Self-assembly Zhang Taiping ^{1*} 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0626-8	Research on High Performance Control System in Wafer Stage of Lithographic Equipment Fei Ban ^{1*} , Minggang Liu ² , Liu Chujun ¹ , Liu Yi ¹ , Wei Xuanyu ¹ 1.Tianfu Xinglong Lake Laboratory, China; 2.Institute of Optics and Electonics, Chinese Academy of Sciences, China
AOMATT2025-0627-15	A Semi-Model-Based Nonlinear Robust Control Architecture of a High-Speed High-Precision Dual-Stage Stepper Wafer Stage Chujun Liu ^{1*} , Fei Ban ¹ , Xuanyu Wei ¹ , Yi Liu ¹ , Minggang Liu ¹ 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0629-12	Effect of Zr content on phase decomposition characteristics and mechanical properties of femtosecond laser fabricated NbMoTaW refractory high entropy alloys Minglei Zhuang ¹ , Litian Zhang ^{1*} , Lingfei Ji ^{1*} , Wei Cheng ¹ , Tianqi Hao ¹ 1.Beijing University of Technology, China
AOMATT2025-0629-14	Ultraviolet perfect absorption leveraging BICs in Al/SiO ₂ hybrid system Hu Jie ¹ , Zheng Jie ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0629-18	Micro-damage analysis in industrial alcohol-assisted nanosecond laser machining of ultra-thin copper foils Bujin Li ¹ , Pai Hu ¹ , Xizhao Lu ^{1*} 1.College of Mechanical Engineering and Automation, Huaqiao University, China

VOIV/11.50522

AOMATT2025-0629-3	Picosecond Laser Fabricationof Au-based Ultrasensitive SERS Substrates Tianran Yao ^{1,2} , Lingfei Ji ^{1,2*} , Zhenyuan Lin ^{2,3} , Weigao Sun ^{1,4} 1.School of Physics and Optoelectronic Engineering, Beijing University of Technology, China, China; 2.Beijing Engineering Research Center of Laser Applied Technology, China; 3.School of Physics and Optoelectronic Engineering, Beijing University of Technology, China; 4.Beijing Engineering Research Center of Laser Applied Technology, China
AOMATT2025-0629-6	Spanning entire-visible perfect absorber based on W-Si₃N₄ hybrid structure Xuan Zou¹, Hong Ll¹, Jie Zheng¹ 1.Sichuan Normal University, China
AOMATT2025-0630-18	Ultrafast Laser Direct Writing Highly Conductive Copper Micropatterns Songyan Xue ¹ , Chunsan Deng ¹ , Huace Hu ¹ , Hui Gao ¹ , Xiong Wei ^{1, 2} 1.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China; 2.Optics Valley Laboratory, Hubei, China
AOMATT2025-0630-27	Microdroplet mass-production using superwetting copper mesh fabricated by dual incident linearly polarized light beams coupling Rui Zhou ^{1*} , Gongfa Yuan ¹ , Anming Mao ¹ , Caijia Nie ¹ , Huangping Yan ¹ , Jingqin Cui ¹ 1.Xiamen University, China
AOMATT2025-0630-30	High-Accuracy Etching Technology of TiO ₂ Nanostructures for Large-Area Metasurface Concentrators Wang Chen ^{1,2} , Sun Shicheng ³ , Wei Hongda ^{1,2,4} , Zhang Zhiyu ^{1,2,4*} 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China; 2.University of Chinese Academy of Sciences, China; 3.Wuhan University of Technology, China; 4.State Key Laboratory of Advanced Manufacturing for Optical Systems, China
Tra	ck 4: Optical Field Manipulation: Principles and Applications
AOMATT2025-0503-2	Broadband circular dichroism with all-dielectric chiral catenary metasurfaces Jixiang Cai ¹ 1.School of Mechanical Engineering, Inner Mongolia University of Technology, China
AOMATT2025-0512-2	Refractive Index Modulation Assisted Microsphere Compound Lens Nano- imaging Shuyang Huang ¹ , Xinchen Zhong ¹ , Minghui Hong ^{1*} 1.Xiamen University, China
AOMATT2025-0512-3	Enhanced Microsphere Nano-imaging via Oblique Illumination Xinchen Zhong ¹ , Shuyang Huang ² , Minghui Hong ^{2*} 1.xiamen university, China; 2.Xiamen university, China
AOMATT2025-0527-1	Synergistic Radiative-Evaporative Cooling Coatings for Advanced Thermal Management Dongxiang Wang ^{1, 2} , Xiangang Luo ^{3*} , Renyan Zhang ³ , Yingeng Wang ² , Yingjie Wu ³ , Xiong Li ³ 1.College of Mechanical and Electrical Engineering, Chengdu University of Technology, China; 2.Sichuan Engineering Research Center of Digital Materials, Tianfu Xinglong Lake Laboratory, China; 3.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China

AOMATT2025-0604-2	Nonlocal Meta-Lens Composed of Catenary Meta-atoms Jianping Shi ^{1*} 1.School of Physics and Electronic Information, Anhui Normal University, China
AOMATT2025-0604-3	Broadband Perfect Littrow Diffraction Metasurface under Large-Angle Incidence Siliang Zhou ¹ 1.Tongji University, China
AOMATT2025-0605-1	 16-Mode OAM Shift Keying FSO Communication Using Multi-Plane Light Convertor Xu Xing^{1,2,3}, Mingfeng Xu^{1,2,3}, Mingbo Pu^{1,2,3}, Tianqu Chen⁴, Yong Yu^{1,2,3}, Zheng Wu⁵, Sichao Chen⁵, Yinghui Guo^{1,2,3}, Fei Zhang^{1,2,3}, Xiangang Luo^{1,2,3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.Department of Communication Science and Engineering, Fudan University, China; 5.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0606-2	Fast beam steering based on reconfigurable metasurface and its applications Zhirui Zeng ¹ , Shibin Jiang ¹ , Weiming Zhu ¹ 1.University of Electronic Science and Technology of China, China
AOMATT2025-0611-1	Poincaré Sphere Mapping of Lateral Optical Forces on Chiral Particles Zesen Lin ^{1, 2} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0612-2	Generation of tunable vector beams in non-Hermitian coupled-cavity laser Qiang Chen ^{1, 2, 3} , Xi Tang ^{1, 2} , Feifei Zhang ¹ , Shuangcheng Chen ^{4, 5} , Mingfeng Xu ^{1, 2, 3} , Xianglei Yan ^{1, 2} , Yuhan Zheng ^{1, 2, 3} , Shilin Yu ^{1, 2} , Qingji Zeng ^{1, 2} , Fei Zhang ^{1, 2, 3} , Yinghui Guo ^{1, 2, 3} , Mingbo Pu ^{1, 2, 3} , Xiangang Luo ^{1, 2, 3*} 1.National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.Tianfu Xinglong Lake Laboratory, China; 5.Sichuan Provincial Engineering Research Center of Digital Materials, China

AOMATT2025-0612-4	A fast computation method for the performance of meta-atoms based on deep learning Tengyu Cheng ^{1, 2, 3} , Zizhe Feng ^{1, 4, 5} , Yingli Ha ^{1, 4, 5} , Mingbo Pu ^{1, 4, 5} , Lijun Wang ^{1, 4, 5} , Yijia Huang ^{2, 3*} , Xiangang Luo ^{1, 4, 5*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Key Laboratory of Micro-Nano Optoelectronic Materials and Devices at Sichuan Normal University of Sichuan Province, China; 3.College of Physics and Electronic Engineering, Sichuan Normal University, China; 4.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 5.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0612-6	Physics-Driven Free-Form Perfect Reflective Metadevices Han Yin ^{1,2,3} , Yingli Ha ^{1,4,5} , Mingbo Pu ^{1,4,5} , Lijun Wang ^{1,4,5} , Jianping Shi ^{2,3*} , Xiangang Luo ^{1,4,5*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Wuhu, China, China; 3.School of Physics and Electronic Information, Anhui Normal University, Wuhu, China; 4.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 5.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0613-1	 Deep Learning-Enabled Rapid Inverse Design of High-Performance Zizhe Feng^{1, 2, 3}, Tengyu Cheng^{1, 4, 5}, Yingli Ha^{1, 2, 3}, Mingbo Pu^{1, 2, 3}, Xiangang Luo^{1, 2, 3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.Key Laboratory of Micro- Nano Optoelectronic Materials and Devices at Sichuan Normal University of Sichuan Province, China; 5.College of Physics and Electronic Engineering, Sichuan Normal University, China
AOMATT2025-0613-4	Subwavelength interference with deep ultraviolet superlens Xun Deng ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0614-1	Complex-amplitude metasurface-based monolithic integrated diffractive optical neural network Wang Lijun ^{1, 2, 3} , Ha Yingli ^{1, 2, 3} , Guo Yinghui ^{1, 2, 3} , Pu Mingbo ^{1, 2, 3} , Luo Xiangang ^{1, 2, 3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China

V01/11.5052

AOMATT2025-0616-1	Non-Hermitian Coupled Double Microcavities Modes Interaction under Inhomogeneous Spatial Pump Runze Liu ^{1,2,3,4} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 3.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 4.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0616-3	Ultra transparent self-healing photothermal film for anti-icing/de-icing Yi Liu ^{1, 2, 3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Centre on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0616-5	Polarization-Spectral Dual-Mode Reconfigurable Detection based on Cascading Pancharatnam-Berry Phase Optical Element Siyuan Qiao ^{1, 2, 3} , Yinghui Guo ^{1, 2, 3, 4} , Qi Zhang ^{1, 2, 3} , Xiaoyin Li ^{1, 2, 3} , Mingbo Pu ^{1, 2, 3} , Xiangang Luo ^{1, 2, 3*} 1.State Key Laboratory of Optical Filed Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.Sichuan Provincial Engineering Research Center of Digital Materials, China
AOMATT2025-0617-20	The Optimization of Extreme ultraviolet metalens for enhancing focusing performance Yinuo Zhao ^{1, 2, 3} 1.National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0617-22	Catenary Metasurface-Based Perfect Reflector Design via Topology Optimization Ting Hou ^{1, 2} , Yingli Ha ^{2, 3, 4} , Lijun Wang ^{2, 3, 4} , Han Yin ^{2, 3, 4} , Wenjuan Du ^{1*} 1.School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 3.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 4.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China

V01/11205

AOMATT2025-0617-3	Sub-Nanometer Resolution Quantum Metrology via Metasurface Mode Decomposition Wenyi Ye ^{1, 2, 3} , Hao Peng ^{1, 2} , lianwei Chen ^{2, 4} , Mingbo Pu ^{4, 5, 6*} , Xiangang Luo ^{1, 3, 5*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 5.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 6.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; Sciences, China; 6.College of Materials
AOMATT2025-0617-9	Nanofocusing resolution enhancement of superlens combing with optically induced local thermal effect Zhenghao Wang ^{1, 2, 3} 1.National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0618-1	Research on Damage Characteristics of Wavelength Separation Films Under Composite Laser Irradiation Zhen Wang ¹ , Mei Chen ¹ , rongzhu Zhang ¹ 1.Sichuan University, China
AOMATT2025-0618-13	Range-Gated and Polarization-Assisted Techniques for Enhanced Underwater Imaging in Scattering Environments Qingtian Wang ^{1, 2} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0618-15	Performance Analysis of a Floating Multi-Focus Metalens in LWPT: Influence of Aperture and Thickness Zheting Meng ^{1,2,3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 3.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China

VOIVVIJ 5052

AOMATT2025-0618-2	Ionic Liquid-Gated Carbon Nanotube Films for Tunable Terahertz Modulation Arina Radivon ^{1*} , Gleb Katyba ^{2,3} , Nikita Raginov ⁴ , Aram Mkrtchyan ⁴ , Aleksey Chernykh ⁵ , Ignat Rakov ⁴ , Maksim Paukov ⁶ , Mikhail Mironov ⁶ , Gennady Komandin ² , Kirill Zaytsev ² , Yuriy Gladush ⁴ , Nikolay Petrov ^{5,7} , Albert Nasibulin ⁴ , Aleksey Arsenin ⁶ , Dmitry Krasnikov ⁴ , Maria Burdanova ^{3,6,8} 1.Moscow Institute of Physics and Technologies, Russia; 2.Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; 3.Institute of Solid State Physics of the Russian Academy of Sciences, Russia; 4.Skolkovo Institute of Science and Technology, Russia; 5.ITMO University, Russia; 6.Moscow Institute of Physics and Technology, Russia; 7.Qingdao Innovation and Development Center, China; 8.Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia
AOMATT2025-0619-11	Deep Learning Enabled Inverse Design of High-NA Polarization-Multiplexed Metasurfaces for Extended Depth of Focus Zihan Lin ^{1, 2, 3} , Yingli Ha ^{1, 2, 3} , Lijun Wang ^{1, 2, 3} , Zizhe Feng ^{1, 2, 3} , Yinghui Guo ^{1, 2, 3} , Mingbo Pu ^{1, 2, 3} , Xiangang Luo ^{1, 2, 3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0619-16	Error Analysis of a Synthetic-Wave Interferometric System for Multi- Dimensional Polarization Measurement Liuxiang Wei ¹ , Yan Chen ¹ , Lianwei Chen ¹ , Fei Zhang ¹ , Mingbo Pu ¹ , Xiangang Luo ¹ 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0619-17	Dual-Channel Parallel CDMA for 78MHz LiDAR Acquisition Shujian Gong ^{1, 2, 3} , Peng Tian ^{1, 2, 4} , Yinghui Guo ^{1, 2, 3, 5} , Xiaoyin Li ^{1, 2} , Qi Zhang ^{1, 2} , Mingbo Pu ^{1, 2, 3, 5*} , Jianping Shi ^{4*} , Xiangang Luo ^{1, 2, 3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.School of Physics and Electronic Information, Anhui Normal University, China; 5.Sichuan Provincial Engineering Research Center of Digital Materials, China
AOMATT2025-0619-20	Optical Holographic Encryption Enabled via Dual-Layer Stacks of Three Cascaded Liquid Crystal Elements Zhishuai Zheng ^{1, 2, 3} , Xin Xu ^{2, 3, 4} , Yinghui Guo ^{2, 3, 4, 5} , Qi Zhang ^{2, 3} , Mingbo Pu ^{2, 3, 4, 5*} , Xiangang Luo ^{2, 3, 4} , Qing Zhao ^{1*} 1.School of Resources and Environment, University of Electronic Science and Technology of China, China; 2.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 4.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 5.Sichuan Provincial Engineering Research Center of Digital Materials, China

AOMATT2025-0619-4	Spin-Decoupled Phase Modulation for Second Harmonic Generation via Single-Meta-Atom Metasurfaces Mengna Jiang ^{1,2,3} , Yan Chen ^{1,4} , Fei Zhang ^{1,2,3,4} , Mingbo Pu ^{1,2,3,4} , Xiaoliang Ma ^{1,2,3,4} , Yinghui Guo ^{1,2,3,4} , Xiangang Luo ^{1,2,3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0619-5	Synthesis of Dynamic Vector Light Fields Based on Metasurfaces Chen Liu ^{1, 2, 3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 3.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0619-6	 Physics-driven Deep Learning-Based Broadband Thin-Film System Global Optimization Design Jingdong Wang^{1, 2, 3}, Yingli Ha^{1, 2, 3}, Lijun Wang^{1, 2, 3}, Mingbo Pu^{1, 2, 3}, Xiangang Luo^{1, 2, 3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0620-10	Fabrication of Complex Photonic Crystals via Single-Step Holographic interferometry and Influence of Polarization Modulation Wenyao Liang ¹ 1.South China University of Technology, China
AOMATT2025-0620-11	Integrated and Simultaneous Metasurfaces for Visible Full-Stokes Spectropolarimeters Gensen Yang ^{1,2} , Ruiqi Chen ^{1,2} , Haoquan Wang ^{1,2} , Kaihong Xu ^{1,2} , Shun Wan ^{1,2} , Jianjun Yang ^{1,2} , Haiyang Wang ^{1,2} , Pinggang Jia ^{1,3*} , Yaxin Zhang ^{4*} 1.School of Semiconductor and Physics, North University of China, China; 2.State Key Laboratory of Widegap Semiconductor Optoelectronic Materials and Technologies, North University of China, China; 3.State Key Laboratory of Widegap Semiconductor Optoelectronic Materials and Technologies, China; 4.Xi'an Institute of Electromechanical Information Technology, China
AOMATT2025-0620-13	Signal-to-noise Ratio Dominates Turbulence Resistance in Laser Reflective Tomography Zewei Wang ¹ , Yinghui Guo ¹ , Xiaoyin Li ¹ , Xiangang Luo ¹ , Mingbo Pu ^{1*} 1.Institute of Optics and Electronics, China

AOMATT2025-0620-3	Synthetic waves sensor enables anti-scatter imaging in atmospheric turbulence Yuting Xiao ^{1,2,3} , Yu Luo ^{1,2,3} , Lianwei Chen ^{1,2} , Mingbo Pu ^{1,2,3*} , Xiangang Luo ^{1,2,3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0623-4	Hierarchical Spatio-Temporal Denoising for Photon-Efficient 3D LiDAR Imaging under Low SBR Yuanjian Huang ^{1,2,3} , Hengshuo Guo ⁴ , Yinghui Guo ^{2,3,5,6} , Xiaoyin Li ^{1,2,7} , Mingbo Pu ^{1,2,7,8*} , Qi Zhang ^{1,2,7} , Junwen Zhang ³ , Xiangang Luo ^{5,7*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.Future Information Innovative College (FIIC), Fudan University, China; 4.Tianfu Xinglong Lake Laboratory, China; 5.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, China; 6.Sichuan Provincial Engineering Research Center of Digital Materials, China; 7.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 8.Future Information Innovative College (FIIC), Fudan University, China
AOMATT2025-0625-1	Anti-Scattering Performance Analysis of Elliptical-Vortex Ince-Gauss Vector Beams Hanxiang Yan ^{1,2,3} , Yinghui Guo ^{1,2,3} , Xin Luo ^{1,2} , Haiqing Wang ^{1,2,3} , Qiangqiang Liu ^{1,2,3} , Jiaqi Wang ^{1,2,3} , Mingbo Pu ^{1,2,3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0626-3	Study of super-resolution imaging and memory enabled by core-shell metal nanoparticles Le Gao ¹ , Qiming Zhang ² 1.Zhangjiang Laboratory, China; 2.University of Shanghai for Science and Technology, China
AOMATT2025-0627-1	Metasurfaces for Efficient Narrowband Polarisation Conversion Enabled by Generalized PB Phase Jia Qiu ¹ , Yijia Huang ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0627-14	Spatial Division Multiplexed Single Phase Mask for OAM Detection Shujian Gong ^{1, 2, 3} , Peng Tian ^{1, 2, 4} , Yinghui Guo ^{1, 2, 3} , Mingbo Pu ^{1, 2, 3*} , Jianping Shi ^{4*} , Xiangang Luo ^{1, 2, 3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.School of Physics and Electronic Information, Anhui Normal University, China

AOMATT2025-0627-2	Four-channel full-space metasurface design and multifunctional electromagnetic modulation based on asymmetric resonant coupling Yue Cheng ¹ , Yijia Huang ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0627-3	Identification of Vector Vortex Pin-like Beams through Atmosphere Turbulence Haiqing Wang ^{1,2,3} , Runzhe Zhang ^{1,2,3} , Yinghui Guo ^{2,3,4} , Jiaqi Wang ^{2,3,4} , Hanxiang Yan ^{2,3,4} , Qiangqiang Liu ^{2,3,4} , Pingbo Pu ^{1,2,3,5} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto- Electronic Technology, University of Chinese Academy of Sciences, China; 4.tate Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 5.Sichuan Provincial Engineering Research Center of Digital Materials, China
AOMATT2025-0628-9	UKF-Assisted Optimization for Single-Pixel Imaging and target tracking Kanghao Gai ^{1,2,3} , Yinghui Guo ^{1,2,3*} , Qi Zhang ^{1,2,3} , Xiaoyin Li ^{1,2,3} , Mingbo Pu ^{1,2,3} , Xiangang Luo ^{1,2,3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
AOMATT2025-0629-10	Optimizing the Speed-Quality Trade-off in Sparse NLOS Imaging: A LASSO-Regularized Proximal Gradient Framework Peng Yang ^{1,2} , Zewei Wang ^{1,2} , Yinghui Guo ^{1,2,3} , Mingbo Pu ^{1,2,3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 3.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0629-16	Ultraviolet perfect absorption leveraging BICs in Al/SiO ₂ hybrid system Hu Jie ¹ , Zheng Jie ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0629-19	Orbital Angular Momentum Enhanced Double-layer Metasurface Multi-level Encrypted Holography Qiangqiang Liu ^{1,2,3} , Runzhe Zhang ^{2,3,4} , Yinghui Guo ^{2,3,4} , Xiaoyin Li ^{2,4} , Hanxiang Yan ^{2,3,4} , Haiqing Wang ^{2,3,4} , Jiaqi Wang ^{2,3,4} , Mingbo Pu ^{2,3,4*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, United States; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, United States; 3.College of Materials Sciences and Opto-Electronic Technology, United States; 4.State Key Laboratory of Optical Field Manipulation Science and Technology, China

AOMATT2025-0629-4	 Multi-mode beam scanning method using cascaded rotating liquid crystal polarization gratings for three-dimensional imaging lidar Xiang Du^{1,2,3}, Yinghui Guo^{1,2,3*}, Qi Zhang^{1,2,3}, Xiaoyin Li^{1,2,3}, Mingbo Pu¹, Xiangang Luo^{1,2,3} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China 	
AOMATT2025-0630-17	Parallel Multi-focus Femtosecond Laser Direct Writing Enabled by Non- iterative Phase Regional Segmentation and SVG Guidance Yaoming Cheng ¹ , Feiyan Men ¹ , Chen Zhang ^{1*} , Wei Zhao ¹ , Jintao Bai ¹ 1.NorthWest University, China	
AOMATT2025-0630-21	Coarse-fine scanning method based on Risley prisms Xun Luo ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China	
AOMATT2025-0630-23	Achromatic CMOS-Integrated Four-Bit Orbital Angular Momentum Mode Detector at Three Wavelengths Xiaonan Hu ¹ 1.University of Shanghai for Science and Technology, China	
AOMATT2025-0630-6	A Dual-image Encryption Meta-device with Integration of the Multifunctional Metasurface and the Single-pixel Fourier Imaging Method Renxuan Tu ¹ , Tianyou Zhang ¹ , Qi Dai ^{1*} 1.College of Advanced Interdisciplinary Studies, National University of Defense Technology, China	
Track 5: Novel Optoelectronic Materials		
AOMATT2025-0516-1	Efficient Inverted Perovskite Solar Cells Using Phosphonic Acid Additive Modification Hailin Yang ¹ , Junwen Liu ¹ , Yue Chen ¹ , Jie Li ¹ , Dingyu Yang ^{1*} , Xiao Wang ^{1*} 1.College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China	
AOMATT2025-0520-1	Study on Correction Masks Compensation Optimizationin Large-Aperture Infrared Evaporation Coatings Yaoping Zhang ^{1*} , Zhipeng Lv ¹ , Guoyun Long ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China	
AOMATT2025-0606-4	Terahertz intensity modulator based on PEDOT:PSS:DMSO and ionic liquid electrodynamic interaction Yangqi Liu ¹ , Zhang Yan ^{1*} 1.Capital Normal University, China	

AOMATT2025-0609-2	Bessel Beams with Tunable Topological Charge and Polarization Generated by Moiré Meta-device Tong Nan ^{1, 2} , Yan Zhang ^{1, 2*} 1.Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, China; 2.School of Physics, Harbin Institute of Technology, China
AOMATT2025-0610-2	A highly deformableand high-performance optical Paper-Based Perovskite terahertz modulator Xiaochen Fan ¹ , Lu Xiao ¹ 1.Capital Normal University, China
AOMATT2025-0610-3	Vanadium dioxide-doped perovskite heterojunction for terahertz optical modulation Lu Xiao ¹ , Xiaochen Fan ¹ 1.Capital Normal University, China
AOMATT2025-0612-8	Quasi-flatband bound states in the continuum incoupled photonic crystal defects Yaru Hao ¹ , Mingyu Luo ² , Zhaojian Zhang ^{3*} 1.School of Sports Science, Changsha Normal University, China; 2.Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, China; 3.Department of Physics, National University of Defense Technology, China
AOMATT2025-0616-7	Reconfigurable dual-band absorber based on metasurface and phase- change material Mingyu Luo ^{1*} 1.The Hong Kong Polytechnic University, China
AOMATT2025-0617-15	Unveiling Bi-doping induced structural and optical evolution in β-Ga ₂ O ₃ : a combined experimental and first-principles study Wen Wang ¹ , Mao Wang ^{2*} 1.Key Laboratory of Micro-Nano Optoelectronic Materials and Devices at Sichuan Normal University, China; 2.Sichuan Normal University, China
AOMATT2025-0617-16	Hyperdoped Ge for plasmonics: tunable plasmonic frequency by doping concentration andplasmonic structural design Minjuan Yuan ¹ , Mao Wang ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0617-17	Heteroepitaxial Growth of High-Quality Single-Crystalline β-Ga ₂ O ₃ on Si(111) Enabled by AIN Buffer layer for Solar-Blind Photodetectors Tingting Wang ¹ , Mao Wang ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0617-18	Enhanced near-infrared absorption in Au-hyperdoped Si: interplay between mid-gap states and plasmon resonance Songyuan Peng ¹ , Mao Wang ^{1*} 1.Sichuan Normal University, China

AOMATT2025-0617-2	Charge carrier transport properties of graphene-based porous carbon nanostructure Shuang Sun ¹ , Peng Han ¹ , Yan Zhang ^{1*} 1.Capital Normal University, China
AOMATT2025-0617-21	Broadband Dual-Polarization Reconfigurable Intelligent Surface for Beam- Scanning Communication Systems Yanxun Wang ^{1*} , Jiahao Huang ¹ , Ruifeng Xie ¹ , Zhe Zhang ¹ , Dan Wang ¹ 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0618-14	Fabrication and Electrochromic Performance of PB Nanoparticle-Based Flexible Electrochromic Devices Yingeng Wang ¹ 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0619-22	Simultaneous and Rapid Detection of Multiple Components in E-Cigarette Liquids Using Tunable Polystyrene@Silver Composite SERS Substrate Qi Wang ^{1*} 1.University of Electronic Science and Technology of China, China
AOMATT2025-0619-7	Dual-band plasmonic enhancement in Au-grated Te-hyperdoped Si for high- efficiency room-temperature infrared photodetection Wang Anyang ¹ , Wang Mao ^{1*} 1.Sichuan Normal University, China
AOMATT2025-0620-12	Lead-Free Hydrogenated Cs ₂ AgBiBr ₆ Enters Perovskite/Si Tandem Photovoltaics: SCAPS-1D Simulation-Driven Thickness Optimization for 2T and 4T Configurations HeYizhou ¹ , ZhangChi ¹ , WangQi ¹ , LiuXiaodong ¹ , GuoXiaowei ^{1, 2*} 1.School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), China; 2.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China (UESTC), China
AOMATT2025-0624-2	Preparation of Scalable Porous Radiation Cooling Coatings Based on Liquid- Liquid Phase Separation with a Bilayer Strategy yidan gong ^{1,2,3} , Yingjie Wu ^{1,2} , Renyan Zhang ⁴ , Bin Liu ^{1,2,3} , Dan Cai ^{1,2} , Yingeng Wang ⁵ , Xiong Li ^{1,2,3*} , Xiangang Luo ^{1,2,3*} 1.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 4.College of Advanced Interdisciplinary Studies, National University of Defense Technology, China; 5.Sichuan Engineering Research Center of Digital Materials, Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0626-10	Strong Polarization-Tuned Optical Nonlinearity Via Femtosecond-Laser Plasmonic Nanolithography in Lithium Niobate Wenqing Sun ¹ , Xiaoli Sun ^{1*} , Feng Chen ^{1*} 1.Shandong University, China

AOMATT2025-0627-10	The study of smooth ultrathin gold films by optical pump - terahertz probe spectroscopy Maksim Paukov ^{1*} , Aleksander Marakulin ² , Dmitry Yakubovsky ³ , Shuang Sun ⁴ , Gennady Komandin ⁵ , Kirill Zaitsev ⁵ , Aleksey Arsenin ³ , Valentyn Volkov ³ , Yan Zhang ⁴ , Maria Burdanova ^{1, 5, 6} 1.Center for Photonics and 2D Materials, MIPT, Russia; 2.MIPT, Russia; 3.Emerging Technologies Research Center, XPANCEO, United Arab Emirates; 4.Beijing Key Laboratory of Metamaterials and Devices, Capital Normal University, China; 5.Institute of General Physics of Russian Academy of Sciences named after A.M. Prokhorov, Russia; 6.Institute of Solid State Physics of Russian Academy of Sciences named after A.Yu. Osypyan, Russia
AOMATT2025-0627-9	Low-Threshold Tunable Near-Infrared VCSEL Based on MAPbl₃ Phase- Change perovskite Rongzi Wang ¹ , Ying Su ¹ , Tun Cao ^{1*} 1.Dalian University of Technology, China
AOMATT2025-0629-13	Synthesis and Characterization of HgTe Colloidal Quantum Dots Xuxin deng ¹ , Tan Haowen ¹ , Su Lipeng ¹ , Zen Haiyang ¹ , Sun Yang ¹ , Chen Youxian ¹ , Wang Xiaohui ^{1*} 1.University of Electronic Science and Technology of China, China
AOMATT2025-0629-17	HgTe Quantum Dot Infrared Photodetector: Fabrication Optimization and Performance Characterization Lipeng Su ¹ , Xuxin Deng ¹ , Haowen Tan ^{1,2} , Haiyang Zeng ^{1,2} , Yang Sun ¹ , Youxian Chen ^{1,2} , Xiaohui Wang ^{1,2,3*} 1.School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, China; 2.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, China; 3.Tianfu Jiangxi Laboratory, China
AOMATT2025-0629-9	Research on Performance Degradation of Reflection-mode NEA GaN Photocathode with Uniform Doping Structure below Room Temperature Haowen Tan ^{1,2} , Xuxin Deng ³ , Lipeng Su ³ , Haiyang Zeng ^{2,3} , Yang Sun ³ , Youxian Chen ³ , Xiaohui Wang ^{2,3,4*} 1.University of Electronic Science and Technology of China, China; 2.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, China; 3.School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, China; 4.Tianfu Jiangxi Laboratory, China
AOMATT2025-0710-30	High Efficient Non-doped Deep Blue with Low Efficiency Roll-Off using Oxazole Based on Hybridized Local and Charge-Transfer Emitters Xiufeng Zhou ¹ , Taiyu Li ¹ , Qiao Luo ¹ , Junsheng Yu ^{1*} 1.University of Electronic Science and Technology of China (UESTC), China
	Track 6: Optical Sensing and Optical Communication
AOMATT2025-0417-1	Design of a non-vacuum focal plane presetting optical systems for space debris detection Zhihai Pang ¹ 1.Space Optics Laboratory. Xi'an Institute of Optics and Precision Mechanics. Chinese Academy of Sciences, China

AOMATT2025-0611-5	Performance Study of Fiber Bragg Grating (FBG) Sensors in Ultra-Low Temperature Quench Detection for CFETR CSMC Jincheng Jiang ^{1, 2} , Yanlan Hu ¹ , Qicai Ni ^{1*} 1.ASIPP, China; 2.University of Science and Technology of China, China
AOMATT2025-0612-3	High-Capacity Free-Space Optical Communication Using Quadruplex Cylindrical Vector Beam Multiplexing: A 3.2-km Field Experiment Shuangcheng chen ¹ , Jiazheng Ding ¹ , Mengjie Zhou ¹ , Xianglei Yan ² , Yong Yu ² , Xu Xing ² , Mingfeng Xu ^{2*} 1.Tianfu Xinglong Lake Laboratory, China; 2.State Key Laboratory of Optical Field Manipulation Science and Technology, China
AOMATT2025-0615-3	Hydrogel-Driven Tunable Photonic Crystal Grating for Gas Detection Hao Cui ¹ , Tao Yang ¹ , Yaqi Shi ¹ , Zhi Ma ¹ , Zongyin Yang ¹ , shurong Dong ^{1*} 1.Zhejiang University, China
AOMATT2025-0617-7	Error Correction Method for Enhanced Focusing Detection Accuracy in High- Resolution Lithography Taibei Li ^{1,2,3} , Minggang Liu ^{1,2} , Weijie Kong ^{1,2,3} , Changtao Wang ^{1,2,3} , Mingbo Pu ^{1, ^{2,3}, Xiaoliang Ma^{1,2,3}, Xiong Li^{1,2,3}, Xiangang Luo^{1,2,3} 1.National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 2.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.University of Chinese Academy of Sciences, China}
AOMATT2025-0620-9	 VMD-FFT-Enhanced Coherent Detection for Low-SNR LiDAR Toward Super- Diffraction Imaging Wenlong Li^{1,2} 1.Tianfu Xinglong Lake Laboratory, Chengdu, China; 2.College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, China
AOMATT2025-0621-1	Spectroscopic Diagnosis of Plasma in Microwave Plasma Thruster Resonant Cavity ye yuan ^{1, 2} , jiang hong sun ³ , yang hai ⁴ , nai lin ⁴ , cheng guo ^{2, 5} , qing zhao ^{2, 5*} 1.Southwestern Institute of Physics, China; 2.University of Electronic Science and Technology of China, China; 3.Shanghai Institute of Space Propulsion, China; 4.The 10th Research Institute of China Electronics Technology Group Corporation, China; 5.Yangtze Delta Region Institute of University of Electronic Science and Technology of China, China
AOMATT2025-0624-1	Micro-ring Modulator for dense wavelength division multiplexing communications based on Thin-film Lithium Niobate Fang Zou ^{1*} , Yongtao Du ² , Fei Duan ¹ , Qiancheng Rao ¹ , Ge Cui ¹ , Shuting Wang ¹ , Yinghui Guo ^{3*} 1.Tianfu Xinglong Lake Laboratory, China; 2.Southwest Jiaotong University, China; 3.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0626-4	Development of a Portable Fluorometer Using Optical Pick-Up Unit for Cost- Effective Chlorophyll-a Detection Xu Chen ¹ , Jing Wen ^{1*} 1.Zhangjiang Laboratory, China
AOMATT2025-0630-22	Simulation Analysis of Modal Wavefront Reconstruction for Radial Shearing Interferometry under Aperture Center Offset Fuzhong Bai ^{1*} 1.Inner Mongolia University of Technology, China

VOIVV1.50522

AOMATT2025-0630-29	Research on Target Recognition Based on Information Fusion of Optoelectronic Multi sensors YongHao Mao ^{1*} 1.School of Electronic Information and Physics, Central South University of Forest and Technology, Poland
AOMATT2025-0630-3	Dynamic Reflectance Modeling of Cat-Eye Optical Systems under Low-SNR Single-Photon Detection Pengxin Yan ¹ , Yahui Zhang ^{1*} 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0630-8	Demonstration of Plug-and-Play All-Optical Chaotic Secure Communication in Local Area Network Sichao Chen ¹ , Wu Zheng ¹ , Mengjie Zhou ² , Yiqun Zhang ^{3,4} , Mingfeng Xu ^{3,4,5} , Mingbo Pu ^{3,4,5} , Xiangang Luo ^{3,4,5*} 1.Tianfu Xinglong lake laboratory, China; 2.Tianfu Xinglong Lake Laborotary, China; 3.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 4.Research Center on Vector Optical Fields, Institute of Optics and Electronics, China; 5.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
Track 7: Intelligent Optoelectronic Technology	
AOMATT2025-0528-4	Research on Tunable Laser Light Source Driving System Based on FPGA and GaN HEMT Yuanming Wang ¹ , Shuaiwen Liao ¹ , Yuting Zhang ^{1*} , Ke Zhao ² , Yifan Zeng ¹ , Yangbo Liu ¹ , Wenzhong Qin ² , Lingyun Deng ² 1.School of Optoelectronic Engineering, Guilin University of Electronic Technology, China; 2.Guilin Guangming Science and Technology Industry Co, China
AOMATT2025-0609-5	Research on Street View Map Recognition Based on Compressed Sampling Yi Chen ^{1*} , Ruiyu Pang ¹ , Ziyue Zhou ¹ , Shengda Yao ¹ 1.National University of Defense Technology, China
AOMATT2025-0612-7	Phase Error Correction Using Bilinear Interpolation and Hilbert Transform Lei Fu, Bolin Cai [*] Anhui University, China
AOMATT2025-0613-7	An efficient deep Learning Solution for cardiac signal assessment based on optical fiber sensor Kaili Yang ¹ , Xiuyuan Wang ^{2*} , Wei Xu ³ , Changyuan Yu ^{2*} 1.Changshu No.2 People's Hospital, China; 2.The Hong Kong Polytechnic University, China; 3.Suzhou University of Technology, China
AOMATT2025-0616-4	An online wavefront aberration detection method for projected lithography based on Hartmann wavefront measurement sensors Chenhaolei Han ^{1*} 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0619-8	A Two-Dimensional Multiphysics Simulation Method for Optical-Thermal- Electrical Coupling in Microbolometers for LWIR Applications Shunlong He ¹ , Lintong Zhao ¹ , Jun Liu ¹ , Qingxiang Dong ¹ , Longcheng Que ¹ , Yun Zhou ¹ , Jian Lv ^{1*} 1.University of Electronic Science and Technology of China, China

VONV1.5052

AOMATT2025-0620-14	Enhancing multimodal binary mask modulation imaging efficiency with momentum acceleration Chao Yang Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0620-2	Study on Appearance Anomaly Detection Methods for Large-scale Nuclear Fuel Assemblies Chuncheng Feng ^{1*} , Congzheng Wang ^{1*} , Chang Feng ¹ 1.Institute ofOptics and Electronies, Chinese Academy ofSciences, China
AOMATT2025-0626-2	Breaking the Diffraction limit at 3.2 km: SNSPD-Based Single-Photon Laser Reflective Tomography Hengshuo Guo ¹ , Zewei Wang ² , Mingqi Deng ³ , Qi Zhang ² , Xiaoyin Li ^{2*} , Yinghui Guo ^{2*} 1.Tianfu Xinglong Lake Laboratory, China; 2.Institute of Optics and Electronics, Chinese Academy of Sciences, China; 3.Chengdu University of Technology, China
AOMATT2025-0628-1	Noise-Robust Optical Edge Detection Using Diffractive Deep Neural Networks Huajun Shu ^{1, 2} , Han Hao ³ 1.tate Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China; 2.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, China; 3.State Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, China
AOMATT2025-0628-5	MDFA-DNANet: The Multi-scale Dilated Fusion Attention Network For Infrared Small Target Detection Yu Xie ¹ 1.Institute of Optics and Electronics, Chinese Academy of Sciences, China
AOMATT2025-0630-13	High-precision inference of vortex beam modes in time-varying atmospheric turbulence via diffractive optical neural network Ke Cheng ^{1,2} , Baoli Li ^{1,2} , Min Wang ^{1,2*} , Xinyuan Fang ^{1,2*} , Min Gu ^{1,2,3*} 1.School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, China; 2.Institute of Photonic Chips, University of Shanghai for Science and Technology, China; 3.Zhangjiang Laboratory, China
AOMATT2025-0630-24	Multimodal Fusion-Based Algorithm for Maritime Ship Target Recognition Runhua Wang ¹ , Bin Zhu ^{1*} , Zixiao Wang ¹ , Minhao Chen ¹ , Zongyao Tian ¹ 1.National University of Defense Technology, China
AOMATT2025-0630-4	Long Distance High Precision Online Laser Ranging Method Based on Gauss Newton Full Waveform Decomposition Heping Liu ¹ , Jiahao Huang ¹ 1.Tianfu Xinglong Lake Laboratory, China
AOMATT2025-0630-5	Focused polarization conversion holographic element Jinyu Wang ¹ , Ruixian Chen ¹ , Xinyi Yuan ¹ , Zhengyu Li ¹ , Xueyan Chen ¹ , Xu Zheng ¹ , Jun Xie ¹ , Jianlei Li ¹ , Xuelin Wang ¹ , Yi Yang ¹ , Xiao Lin ¹ , Xiaodi Tan ¹ 1.Fujian Normal University, China

Opto-Electronic Journals Group

工程

Opto-Electronic

Advances

Opto-Electronic Journals series are published by Institute of Optics and Electronics, Chinese Academy of Sciences (IOE, CAS), providing professional platforms to exchange ideas on optics, photonics, and optoelectronics through publishing, conferences, and other activities.

Opto-Electronic Engineering

光电工程(中文)

Publishes major engineering progresses of China in optics and electronics

> E-mail: oee@ioe.ac.cn Website: www.oejournal.org/oee

Opto-Electronic vances

光电进展(英文)

Focuses on the advances of the cutting edge innovations of optics, photonics and optoelectronics

> E-mail: oea@ioe.ac.cn Website: www.oejournal.org/oea

-Electronic

光电科学(英文)

Reports the physical mechanisms and fundamental science of optics, photonics and optoelectronics

> E-mail: oes@ioe.ac.cn Website: www.oejournal.org/oes

Opto=Electronic

光电技术(英文)

Covers the industry implementation and application technologies of optics, photonics and optoelectronics

> E-mail: oet@ioe.ac.cn Website: www.oejournal.org/oet

Intelligent **Opto-Electronics**

Optics-Electronics Plus NEW

D=Electronics

Opto-Electronic Science

Opto-Electronic Technology

۹ https://www.oejournal.org

X (Twitter)

Intelligent

Opto-Electronics

智能光电(英文)

Focuses on the intersection of artificial intelligence and optoelectronics

E-mail: ioe@xIII.cn; ioe@ioe.ac.cn Website: www.oejournal.org/ioe

[Article] Tripolarization and multimode holography via a neural metasurface for high-capacity security encryption

[Review] Sideband entanglement preparation and their applications in quantum information science

[Article] High-fidelity and ultra low-sampling-rate single-pixel imaging with physically enhanced Laguerre-Gaussian encoding

Opto=Electronics Plus

Emphasizes the integration of optoelectronic technologies with emerging domains

E-mail: oep@xlll.cn; oep@ioe.ac.cn Website: www.oejournal.org/oep

[Article] Colourful cloud: active photoluminescent smokescreen for multi-wavelength non-line-of-sight channel establishment and enhancement

[Review] Recent advances in biomimetic micro/nanomanufacturing via femtosecond laser direct writing

Website

Wechat

Track

- Track 1: Electro-optical Telescope and Adaptive Optics
- Track 2: Large and Ultra-Precision Optics Manufacturing
- Track 3: Extreme Micro/Nano Manufacturing
- Track 4: Optical Field Manipulation: Principles and Applications
- Track 5: Novel Optoelectronic Materials
- Track 6: Optical Sensing and Optical Communication
- Track 7: Intelligent Optoelectronic Technology
- Track 8: Optoelectronic Fusion Sensing Technology

www.aomatt.org