26-29 June 2018

China • Chengdu 世纪新城国际会议中心

Invited Speakers

haojiaming.jpg

Title: Spatial and frequency selective plasmonic metasurfaces for long wavelength infrared spectral region

 

Abstract:

The development of novel approaches that control absorption and emission operating in long wavelength infrared (LWIR) spectral region is of fundamental importance for many applications, such as, remote temperature sensing, thermal imaging, radiation cooling, environmental monitoring, and night vision. A high performance plasmonic metasurface-based absorber for the LWIR spectral region is presented. In our design, a pyroelectric thin film, poly(vinylidene fluoride- trifluoroethylene) (P(VDF-TrFE)) copolymer, is introduced as spacer, that offers the device not only with multiple selective high absorption bands but also promising potential for application in optoelectronics. The angle-resolved optical responses show that the absorption effect is sensitive to the incident angles and can be controlled by the periodicity, indicating that our design can function as optical devices with directional and frequency-selective absorption/emission characteristics. By employing a near-field optical microscopy, both the near-field amplitude and phase optical responses of the absorber are investigated at resonant wavelength, thereby providing direct experimental evidence to verify the nature of the absorption effect. To further demonstrate the versatility of our design, a particular metasurface patterned by the building blocks of the absorber is fabricated. Two-dimensional hyperspectral images show that such a patterned structure exhibits both frequency and spatially selective absorption.

Keywords: Plasmonic metasurface, near-field microscope, hyperspectral infrared imaging, spatial and frequency selective

References:

[1]Y. Zhai., Y.G. Ma., S.N. David., D.L. Zhao., R.N. Lou., G. Tan., R.G. Yang., X.B. Yin. Science.355, 1062(2017).

[2] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu. Appl. Phys. Lett. 96, 251104 (2010)

[3] C. Qu., S. J. Ma, J. M. Hao, Q. He, S. L. Sun, and L. Zhou. Phys. Rev. Lett. 115, 235503 (2015).

[4] X. Liu, T. Starr, A. F. Starr, W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).

[5] X.H. Pan, H.Xu, J.M.Hao, et.al., Unpublished.

 

Biography:

Jiaming Hao, Ph.D., researcher of hundred-talent Program (Chinese Academy of Sciences). He has published over 20 journal papers including PRL, Nanoscale, APL, PRB, PRA, OL, OE, etc. His current research directions include Electromagnetically specific metamaterials,  plasma-coupled photonics and conversion optics.


Sponsored by
Contact us

Tel: 028-85100203

Address: Box 350, Shuangliu, Chengdu, Sichuan, China

二维码

Copyright @ Organizing Committee All Rights Reserved
AOMATT China 2018 蜀ICP备05022581号-3